
Dynamic Programming
Algorithm Design 6.1, 6.2, 6.4

Thank you to Kevin Wayne for inspiration to slides



• In class (today and next time)
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• In class (today and next time)

• Weighted interval scheduling


• Set of weighted intervals with start and finishing times

• Goal: find maximum weight subset of non-overlapping intervals

Applications
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📒📓📕📗📘📙

• Today and next time

• Weighted interval scheduling

• Subset Sum and Knapsack


• Set of items each having a weight and a value

• Knapsack with a bounded capacity

• Goal: fill knapsack so as to maximise the total value. 

Applications
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🎒
Capacity 8

weight 2      3     1     2     5     4   

value  10    8     2     5     15    4   



• Today and next time

• Weighted interval scheduling

• Subset Sum and Knapsack

• Sequence alignment


• Given two strings A and B how many edits (insertions, deletions, relabelings) 
is needed to turn A into B?

Applications

A C A A - G T C   
- C A - T G T -  

1 mismatch, 2 gaps 0 mismatches, 4 gaps

A C A A G T C   
- C A T G T -  
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• Greedy. Build solution incrementally, optimizing some local criterion.


• Divide-and-conquer. Break up problem into independent subproblems, 
solve each subproblem, and combine to get solution to original 
problem. 


• Dynamic programming. Break up problem into overlapping 
subproblems, and build up solutions to larger and larger subproblems. 

• Can be used when the problem have “optimal substructure”:


Solution can be constructed from optimal solutions to 
subproblems 
Use dynamic programming when subproblems overlap.

Dynamic Programming
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• Fibonacci numbers:





• First try:

Fn =
0 if n = 0
1 if n = 1
Fn−1 + Fn−2 otherwise

Computing Fibonacci numbers

Fib(n)
if n = 0 
return 0

else if n = 1 
return 1

else 
return Fib(n-1) + Fib(n-2)

Avoid recomputation?
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• Fibonacci numbers:





• Remember already computed values:

Fn =
0 if n = 0
1 if n = 1
Fn−1 + Fn−2 otherwise

Memoized Fibonacci numbers

for j=1 to n
F[j] = null

Mem-Fib(n)

Mem-Fib(n)
if n = 0 
return 0

else if n = 1 
return 1

else 
if F[n] is empty 
F[n] = Mem-Fib(n-1) + Mem-Fib(n-2)

return F[n] 
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• Fibonacci numbers:





• Remember already computed values:

Fn =
0 if n = 0
1 if n = 1
Fn−1 + Fn−2 otherwise

Bottom-up Fibonacci numbers

Iter-Fib(n)
F[0] = 0
F[1] = 1 
for i = 2 to n 
F[i] = F[i-1] + F[i-2]

return F[n] 

time 


space 

Θ(n)
Θ(n)



• Fibonacci numbers:





• Remember last two computed values:

Fn =
0 if n = 0
1 if n = 1
Fn−1 + Fn−2 otherwise

Bottom-up Fibonacci numbers - save space

Iter-Fib(n)
previous = 0
current = 1 
for i = 1 to n 
next = previous + current
previous = current
current = next

return current

time 


space 

Θ(n)
Θ(1)



Weighted Interval Scheduling

11



• Weighted interval scheduling problem

• n jobs (intervals)

• Job i starts at si, finishes at fi and has weight/value vi.

• Goal: Find maximum weight subset of non-overlapping (compatible) jobs.

Weighted interval scheduling
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• Weighted interval scheduling problem

• n jobs (intervals)

• Job i starts at si, finishes at fi and has weight/value vi.

• Goal: Find maximum weight subset of non-overlapping (compatible) jobs.

Weighted interval scheduling
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Optimal?



• Weighted interval scheduling problem

• n jobs (intervals)

• Job i starts at si, finishes at fi and has weight/value vi.

• Goal: Find maximum weight subset of non-overlapping (compatible) jobs.

Weighted interval scheduling
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• Label/sort jobs by finishing time: f1 ≤ f2 ≤…≤ fn  

Weighted interval scheduling
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• Label/sort jobs by finishing time: f1 ≤ f2 ≤…≤ fn  

• Greedy?

Weighted interval scheduling
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• Label/sort jobs by finishing time: f1 ≤ f2 ≤…≤ fn  

• Optimal solution OPT:


• Case 1. OPT selects last job


• Case 2. OPT does not select last job

Weighted interval scheduling
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OPT = vn + optimal solution to subproblem on the subset of jobs 

ending before job n starts 
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OPT = optimal solution to subproblem on 1,…,n-1
p(1) = 0
p(2) = 0
p(3) = 0
p(4) = 2
p(5) = 1

p(6) = 2
p(7) = 3

p(8) = 5

p(j) = largest index i < j 
such that job i is 
compatible with j.



• Label/sort jobs by finishing time: f1 ≤ f2 ≤…≤ fn  

• Optimal solution OPT:


• Case 1. OPT selects last job


• Case 2. OPT does not select last job

Weighted interval scheduling
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OPT = vn + optimal solution to subproblem on 1,…,p(n)
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OPT = optimal solution to subproblem on 1,…,n-1
p(1) = 0
p(2) = 0
p(3) = 0
p(4) = 2
p(5) = 1

p(6) = 2
p(7) = 3

p(8) = 5

p(j) = largest index i < j 
such that job i is 
compatible with j.



• OPT(j) = value of optimal solution to the problem consisting job requests 1,2,..,j.


• Case 1. OPT(j) selects job j


• Case 2. OPT(j) does not select job j


• Recurrence:

Weighted interval scheduling

OPT(j) = vj + optimal solution to subproblem on 1,…,p(j)

OPT( j) = {
0 if j = 0
max{vj + OPT(p( j)), OPT( j − 1)} otherwise
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OPT = optimal solution to subproblem 1,…j-1
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Weighted interval scheduling: brute force

Input: n, s[1..n], f[1..n], v[1..n]

Sort jobs by finish time so that f[1] ≤ f[2]≤ … ≤ f[n] 
Compute p[1], p[2], …, p[n]
Compute-BruteForce—Opt(n)

Compute-Brute-Force-Opt(j)
if j = 0
return 0

else
return max(v[j] + Compute-Brute-Force-Opt(p[j]), 

Compute-Brute-Force-Opt(j-1))

OPT( j) = {
0 if j = 0
max{vj + OPT(p( j)), OPT( j − 1)} otherwise
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• Running time O(n log n):

• Sorting takes O(n log n) time.

• Computing p(n): O(n log n) - use log n time to find each p(i).

• Each subproblem solved once.

• Time to solve a subproblem constant.


• Space O(n)

Weighted interval scheduling: memoization
Input: n, s[1..n], f[1..n], v[1..n]

Sort jobs by finish time so that f[1] ≤ f[2]≤ … ≤ f[n] 
Compute p[1], p[2], …, p[n]

for j=1 to n
M[j] = null

M[0] = 0.
Compute-Memoized-Opt(n)

Compute-Memoized-Opt(j)
if M[j] is empty
M[j] = max(v[j] + Compute-Memoized-Opt(p[j]), 

Compute-Memoized-Opt(j-1))
return M[j]
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Weighted interval scheduling: memoization
Input: n, s[1..n], f[1..n], v[1..n]

Sort jobs by finish time so that f[1] ≤ f[2]≤ … ≤ f[n] 
Compute p[1], p[2], …, p[n]

for j=1 to n
M[j] = empty

M[0] = 0.
Compute-Memoized-Opt(n)

Compute-Memoized-Opt(j)
if M[j] is empty

M[j] = max(v[j] + Compute-Memoized-Opt(p[j]), 
Compute-Memoized-Opt(j-1))

return M[j]
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• Running time O(n log n):

• Sorting takes O(n log n) time.

• Computing p(n): O(n log n) 

• For loop: O(n) time


• Each iteration takes constant time.

• Space O(n)

Weighted interval scheduling: bottom-up

Compute-Bottom-Up—Opt(n, s[1..n], f[1..n], v[1..n])

Sort jobs by finish time so that f[1] ≤ f[2]≤ … ≤ f[n] 
Compute p[1], p[2], …, p[n]

M[0] = 0.
for j=1 to n
M[j] = max(v[j] + M(p[j]), M(j-1))

return M[n]
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Weighted interval scheduling: find solution
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Find-Solution(j)
if j=0

Return emptyset
else if M[j] > M[j-1]

return {j} ∪ Find-Solution(p[j])
else

return Find-Solution(j-1)
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