Amortized Analysis

Inge Li Gortz

CLRS Chapter 17

Today

e Amortized analysis
¢ Multipop-stack
e Incrementing a binary counter

¢ Dynamic tables

Dynamic tables

» Problem. Have to assign size of table at initialization.

» Goal. Only use space ©(n) for an array with n elements.

+ Applications. Stacks, queues, hash tables,....

» Can insert and delete elements at the end.

Dynamic tables

« First attempt.
* Insert:
+ Create a new table of size n+1.
* Move all elements to the new table.
+ Delete old table.
+ Size of table = number of elements

» Too expensive.
» Have to copy all elements to a new array each time.

* Insertion of N elements takes time proportional to: 1 + 2 + -+ +n=0(n2).

+ Goal. Ensure size of array does not change to often.

Dynamic tables

» Doubling. If the array is full (number of elements equal to size of array) copy
the elements to a new array of double size.

=]

[a[s][7[e[2]s]]

[slslslz[e]zfs]ele] [[TT11]

[eo] [e]

» Consequence. Insertion of n elements take time:
* n + number of reinsertions=n+1+2+4 + 8 + +-- + 2l0gn< 3n.

» Space: O(n).

Example: Stack with MultiPop

+ Stack with MultiPop.
» Push(e): push element e onto stack.
» MultiPop(k): pop top k elements from the stack

» Worst case: Implement via linked list or array.
» Push: O(1).
» MultiPop: O(k).

« Can prove total cost is no more than 2n.

===

Stack: Aggregate Analysis

» Amortized analysis. Sequence of n Push and MultiPop operations.
» Each object popped at most once for each time it is pushed.
* #pops on non-empty stack < #Push operations < n.
+ Total time O(n).

===

Binary counter

Amortized Analysis

» Amortized analysis.

+ Average running time per operation over a worst-case sequence of
operations.

» Methods.
+ Summation (aggregate) method
+ Accounting (tax) method

* Potential method

Summation (Aggregate) method

« Summation.
» Determine total cost.

» Amortized cost = total cost/#operations.

+ Analysis of doubling strategy (without deletions):
» Totalcost: n+ 1 +2 + 4 + ... + 2logn = O(n).

» Amortized cost per insert: O(1).

Stack: Aggregate Analysis

» Amortized analysis. Sequence of n Push and MultiPop operations.
» Each object popped at most once for each time it is pushed.
* #pops on non-empty stack < #Push operations < n.
+ Total time O(n).

» Amortized cost per operation: 2n/n = 2.

===

Accounting method

+ Accounting/taxation.
» Assign a cost to each type of operation that is different from actual cost.
- ¢; = cost of operation i

« ¢; = amortized cost of operation i

n n
» Need: Z ¢; > z ¢ for any sequence of n operations.
i=1 =1

- If ¢ = ¢ +x, wherex > 0: Assign the extra credit with elements in the
data structure.

- If ¢ = ¢ —x, wherex > 0: Use x credits stored in the data structure.

Stack: Accounting Method

» Amortized analysis. Sequence of n Push and MultiPop operations.
+ Pay 2 credits for each Push.
+ Keep 1 credit on each element on the stack.

» Amortized cost per operation:
* Push: 2

+ MultiPop: 1 (to pay for pop on empty stack).

i 1

Binary counter

Dynamic Tables: Accounting Method

» Analysis: Allocate 2 credits to each element when inserted.
+ All elements in the array that is beyond the middle have 2 credits.
» Table not full: insert costs 1, and we have 2 credits to save.

« table full, i.e., doubling: half of the elements have 2 credits each. Use these
to pay for reinsertion of all in the new array.

+ Amortized cost per operation: 3.

@

® &

e

®

& &8
L XX o e T T
338333383838
3 88888838

$ 86 8
[x X[[[] o]

LD D P o [D I e X LT T L T LT LT T

Dynamic tables with deletions

+ Halving (first attempt). If the array is half full copy the elements to a new array
of half the size.

[elsllrfefafefafel [T [T 11]
sls[a]7]s[2]]4]
[sls[xl7le]efslale] [[T][]
sls[a]7]s[2]s]4]

« Consequence. The array is always between 50% and 100% full. But risk to
use too much time (double or halve every time).

Dynamic tables

+ Halving. If the array is a quarter full copy the elements to a new array of half
the size.

elsllelel TTTTTTTITT]
ls[[T 1]

» Consequence. The array is always between 25% and 100% full.

Potential method

+ Potential method. Define a potential function for the data structure that is
initially zero and always non-negative.

+ Prepaid credit (potential) associated with the data structure (money in the
bank).

+ Ensure there is always enough “money in the bank” (non-negative potential).
- Amortized cost ¢; of an operation: actual cost ¢; plus change in potential.

< C;=c;+ P(D) —D(D,_))
* Thus:

m m

Z é = z (¢;+ DDy — P(D,_)))

i i

Stack: Potential Method

« Amortized analysis. Sequence of n Push and MultiPop operations.

« ®(S) = #elements on the stack
Ne—v

cPush: &=1+®S)—DS_)=1+@G+1)—-s=2

- S; = stack after ith operation
< &=+ D(S) — D(S;_))

» Amortized cost per operation:

cPop: &=1+®S)—D©S,_)=14+@6-1)-s=0

« Multipop(k): ¢; = 1 + P(S;)) —D(S;_) =k+(s—k)—s=0

Binary Counter

- Amortized analysis. Sequence of n increments.
« ®(B) = #1’s in the counter
« B; = binary counter after ith operation
« =+ DP(B)— D(B,_)

- Amortized cost per increment: #; = #1’s flipped to 0 in the ith operation.
. Ci = tl + 1
« OB)—-DB;_)=—-t,+1

Dynamic tables

» Doubling. If the table is full (number of elements equal to size of array) copy
the elements to a new array of double size.

+ Halving. If the table is a quarter full copy the elements to a new array of half
the size

» Potential function.

2n — L if T at least half full

. ®D) =
D) {L/2 —n if T at less than half full

» L = current array size, n = number of elements in array.

Dynamic tables

+ Doubling. If the table is full (number of elements equal to size of array) copy
the elements to a new array of double size.

+ Halving. If the table is a quarter full copy the elements to a new array of half
the size

+ Potential function.

2n — L if T at least half full

. oD, =
D) {L/Z —n if T at less than half full

+ L = current array size, n = number of elements in array.

+ Inserting when less than half full and still less than half full after insertion:

[x[x e[EETEEET T x N=rL=76

]

« amortizedcost= 1+ - & =0

Dynamic tables

» Doubling. If the table is full (number of elements equal to size of array) copy
the elements to a new array of double size.

+ Halving. If the table is a quarter full copy the elements to a new array of half
the size

» Potential function.

. ®D) = 2n — L if T at least half full
! L/2 —n if T at less than half full

+ L = current array size, n = number of elements in array.

* Inserting when less than half full before and half full after:
n=8,L=16

D lx b b T T T T X

» amortizedcost= 1+ - =0

Dynamic tables

+ Doubling. If the table is full (number of elements equal to size of array) copy
the elements to a new array of double size.

+ Halving. If the table is a quarter full copy the elements to a new array of half
the size

+ Potential function.

2n — L it T at least half full

- ®(D) =
D) {L/Z —n if T at less than half full

» L = current array size, n = number of elements in array.

+ Inserting when at least half full, but not full: n=12,L=16

488 8
L DI o oo T T 1844

- amortized cost= 1+§ =3

Dynamic tables

» Doubling. If the table is full (number of elements equal to size of array) copy
the elements to a new array of double size.

+ Halving. If the table is a quarter full copy the elements to a new array of half
the size

» Potential function.

. ®D) = 2n — L if T at least half full
! L/2 —n if T at less than half full

+ L = current array size, n = number of elements in array.

+ Inserting in full table and doubling n=9,L=16
X - [T T

- amortizedcost= 9+ -5 5% =3

&6

Dynamic tables

+ Doubling. If the table is full (number of elements equal to size of array) copy
the elements to a new array of double size.

+ Halving. If the table is a quarter full copy the elements to a new array of half
the size

+ Potential function.

2n — L if T at least half full

. oD, =
D) {L/Z —n if T at less than half full

+ L = current array size, n = number of elements in array.

+ Deleting in a quarter full table and halving n=3L=8
BT
ERNENEEE

+ amortizedcost= 3+ -a 88 =0

Dynamic tables

» Doubling. If the table is full (number of elements equal to size of array) copy
the elements to a new array of double size.

+ Halving. If the table is a quarter full copy the elements to a new array of half
the size

» Potential function.

. @) =4 21— L ifTatleast half ful
! L/2 —n if T at less than half full

+ L = current array size, n = number of elements in array.

+ Deleting when more than half full (still half full after): n=11,L=16

I I)) I T TT T YRR
88488

- amortized cost= 1+ - § =-1

Dynamic tables

+ Doubling. If the table is full (number of elements equal to size of array) copy
the elements to a new array of double size.

+ Halving. If the table is a quarter full copy the elements to a new array of half
the size

+ Potential function.

2n — L it T at least half full

- ®(D) =
D) {L/Z —n if T at less than half full

» L = current array size, n = number of elements in array.

+ Deleting when half full (not half full after): n=7,L=16

&
D Do T T

« amortizedcost= 1+ & =2

Dynamic tables Potential Method

» Doubling. If the table is full (number of elements equal to size of array) copy + Summary:
the elements to a new array of double size.

1. Pick a potential function, ®, that will work (art).
+ Halving. If the table is a quarter full copy the elements to a new array of half ! P & functt will work (art)

the size 2. Use potential function to bound the amortized cost of the operations
» Potential function. you're interested in.
. @Dy = 21— L i Tatleast half ful 3. Show ®(D;) 2 O for all i.
! L/2 —n if T at less than half full

Techniques to find potential functions: if the actual cost of an operation is
high, then decrease in potential due to this operation must be large, to keep

+ L = current array size, n = number of elements in array. th rtized Hl
e amortized cost low.

+ Deleting in when less than half full (but still a quarter full after):
n=7,L=16

&
D] TP TT]
L

« amortizedcost= 1+ & = 2

