
Amortized Analysis

Inge Li Gørtz

CLRS Chapter 17

Today

• Amortized analysis

• Multipop-stack

• Incrementing a binary counter

• Dynamic tables

Dynamic tables

• Problem. Have to assign size of table at initialization.

• Goal. Only use space Θ(n) for an array with n elements.

• Applications. Stacks, queues, hash tables,….

• Can insert and delete elements at the end.

3

Dynamic tables

• First attempt.

• Insert:

• Create a new table of size n+1.

• Move all elements to the new table.

• Delete old table.

• Size of table = number of elements

• Too expensive.

• Have to copy all elements to a new array each time.

• Insertion of N elements takes time proportional to: 1 + 2 + ······ + n = Θ(n2).

• Goal. Ensure size of array does not change to often.

4

3 5 1 7 8

Dynamic tables

• Doubling. If the array is full (number of elements equal to size of array) copy
the elements to a new array of double size.

• Consequence. Insertion of n elements take time:

• n + number of reinsertions = n + 1 + 2 + 4 + 8 + ···· + 2log n < 3n.

• Space: Θ(n).

3 5 1 7 8 2 3 4 6

3 5

3

3 5 13 5 1 7

3 5 1 7 8 23 5 1 7 8 2 33 5 1 7 8 2 3 4

5

Example: Stack with MultiPop

• Stack with MultiPop.

• Push(e): push element e onto stack.

• MultiPop(k): pop top k elements from the stack

• Worst case: Implement via linked list or array.

• Push: O(1).

• MultiPop: O(k).

• Can prove total cost is no more than 2n.

Stack: Aggregate Analysis

• Amortized analysis. Sequence of n Push and MultiPop operations.

• Each object popped at most once for each time it is pushed.

• #pops on non-empty stack ≤ #Push operations ≤ n.

• Total time O(n).

Binary counter

Amortized Analysis

• Amortized analysis.

• Average running time per operation over a worst-case sequence of
operations.

• Methods.

• Summation (aggregate) method

• Accounting (tax) method

• Potential method

Summation (Aggregate) method

• Summation.

• Determine total cost.

• Amortized cost = total cost/#operations.

• Analysis of doubling strategy (without deletions):

• Total cost: n + 1 + 2 + 4 + ... + 2log n = Θ(n).

• Amortized cost per insert: Θ(1).

Stack: Aggregate Analysis

• Amortized analysis. Sequence of n Push and MultiPop operations.

• Each object popped at most once for each time it is pushed.

• #pops on non-empty stack ≤ #Push operations ≤ n.

• Total time O(n).

• Amortized cost per operation: 2n/n = 2.

Accounting method

• Accounting/taxation.

• Assign a cost to each type of operation that is different from actual cost.

• = cost of operation

• = amortized cost of operation

• Need: for any sequence of operations.

• If , where : Assign the extra credit with elements in the
data structure.

• If , where : Use credits stored in the data structure.

ci i

̂ci i
n

∑
i=1

̂ci ≥
n

∑
i=1

ci n

̂c = c + x x > 0

̂c = c − x x > 0 x

Stack: Accounting Method

• Amortized analysis. Sequence of n Push and MultiPop operations.

• Pay 2 credits for each Push.

• Keep 1 credit on each element on the stack.

• Amortized cost per operation:

• Push: 2

• MultiPop: 1 (to pay for pop on empty stack).

Binary counter

Dynamic Tables: Accounting Method

• Analysis: Allocate 2 credits to each element when inserted.

• All elements in the array that is beyond the middle have 2 credits.

• Table not full: insert costs 1, and we have 2 credits to save.

• table full, i.e., doubling: half of the elements have 2 credits each. Use these
to pay for reinsertion of all in the new array.

• Amortized cost per operation: 3.

x x x x x x x x x x x

x x x x x x x x x x x x x x x x

💰

💰

💰

💰

💰

💰

💰

💰

💰

💰

💰

💰

💰

💰

💰

💰

💰

💰

💰

💰

💰

💰

x x x x x x x x x x x x
💰

💰

x x x x x x x x x x x x x x x x

Dynamic tables with deletions

• Halving (first attempt). If the array is half full copy the elements to a new array
of half the size.

• Consequence. The array is always between 50% and 100% full. But risk to
use too much time (double or halve every time).

3 5 1 7 8 2 3 4 6

3 5 1 7 8 2 3 4

3 5 1 7 8 2 3 4 6

3 5 1 7 8 2 3 4

16

Dynamic tables

• Halving. If the array is a quarter full copy the elements to a new array of half
the size.

• Consequence. The array is always between 25% and 100% full.

3 5 1 7 8

3 5 1 7

17

Potential method

• Potential method. Define a potential function for the data structure that is
initially zero and always non-negative.

• Prepaid credit (potential) associated with the data structure (money in the
bank).

• Ensure there is always enough “money in the bank” (non-negative potential).

• Amortized cost of an operation: actual cost plus change in potential.

•

• Thus:

̂ci ci

̂ci = ci + Φ(Di) − Φ(Di−1)

m

∑
i

̂ci =
m

∑
i

(ci + Φ(Di) − Φ(Di−1)) =
m

∑
i

ci + Φ(Dm) − Φ(D0) ≥
m

∑
i

ci

Stack: Potential Method

• Amortized analysis. Sequence of Push and MultiPop operations.

• elements on the stack

• stack after th operation

•

• Amortized cost per operation:

• Push:

• Pop:

• Multipop(k):

n
Φ(S) = #
Si = i
̂ci = ci + Φ(Si) − Φ(Si−1)

̂ci = 1 + Φ(Si) − Φ(Si−1) = 1 + (s + 1) − s = 2

̂ci = 1 + Φ(Si) − Φ(Si−1) = 1 + (s − 1) − s = 0

̂ci = 1 + Φ(Si) − Φ(Si−1) = k + (s − k) − s = 0

Binary Counter

• Amortized analysis. Sequence of increments.

• 1’s in the counter

• binary counter after th operation

•

• Amortized cost per increment: 1’s flipped to 0 in the th operation.

•

•

•

n
Φ(B) = #
Bi = i
̂ci = ci + Φ(Bi) − Φ(Bi−1)

ti = # i

ci = ti + 1

Φ(Bi) − Φ(Bi−1) = − ti + 1

̂ci = ti + 1 − ti + 1 = 2

Dynamic tables

• Doubling. If the table is full (number of elements equal to size of array) copy
the elements to a new array of double size.

• Halving. If the table is a quarter full copy the elements to a new array of half
the size

• Potential function.

•

• L = current array size, n = number of elements in array.

Φ(Di) = {2n − L if T at least half full
L/2 − n if T at less than half full

Dynamic tables

• Doubling. If the table is full (number of elements equal to size of array) copy
the elements to a new array of double size.

• Halving. If the table is a quarter full copy the elements to a new array of half
the size

• Potential function.

•

• L = current array size, n = number of elements in array.

• Inserting when less than half full and still less than half full after insertion:

• amortized cost = 1 +

Φ(Di) = {2n − L if T at least half full
L /2 − n if T at less than half full

x x x x x x
💰

💰
x x x x x x x n = 6, L = 16n = 7, L = 16

- 💰 = 0

Dynamic tables

• Doubling. If the table is full (number of elements equal to size of array) copy
the elements to a new array of double size.

• Halving. If the table is a quarter full copy the elements to a new array of half
the size

• Potential function.

•

• L = current array size, n = number of elements in array.

• Inserting when less than half full before and half full after:

• amortized cost = 1 +

Φ(Di) = {2n − L if T at least half full
L /2 − n if T at less than half full

x x x x x x x 💰x x x x x x x x

n = 7, L = 16n = 8, L = 16

- 💰 = 0

Dynamic tables

• Doubling. If the table is full (number of elements equal to size of array) copy
the elements to a new array of double size.

• Halving. If the table is a quarter full copy the elements to a new array of half
the size

• Potential function.

•

• L = current array size, n = number of elements in array.

• Inserting when at least half full, but not full:

• amortized cost = 1 +

Φ(Di) = {2n − L if T at least half full
L /2 − n if T at less than half full

x x x x x x x x x x x
💰

💰

💰

💰

💰

💰x x x x x x x x x x x x
💰

💰

n = 11, L = 16n = 12, L = 16

💰

💰 = 3

Dynamic tables

• Doubling. If the table is full (number of elements equal to size of array) copy
the elements to a new array of double size.

• Halving. If the table is a quarter full copy the elements to a new array of half
the size

• Potential function.

•

• L = current array size, n = number of elements in array.

• Inserting in full table and doubling

• amortized cost = 9 +

Φ(Di) = {2n − L if T at least half full
L /2 − n if T at less than half full

x x x x x x x x x

x x x x x x x x

n = 8, L = 8n = 9, L = 16

💰

💰

💰

💰

💰

💰

💰

💰

💰

💰

💰

💰- = 3

💰

💰

Dynamic tables

• Doubling. If the table is full (number of elements equal to size of array) copy
the elements to a new array of double size.

• Halving. If the table is a quarter full copy the elements to a new array of half
the size

• Potential function.

•

• L = current array size, n = number of elements in array.

• Deleting in a quarter full table and halving

• amortized cost = 3 +

Φ(Di) = {2n − L if T at least half full
L /2 − n if T at less than half full

x x x x

x x x

n = 4, L = 16n = 3, L = 8

💰

💰

💰

💰 💰 💰- = 0

💰

Dynamic tables

• Doubling. If the table is full (number of elements equal to size of array) copy
the elements to a new array of double size.

• Halving. If the table is a quarter full copy the elements to a new array of half
the size

• Potential function.

•

• L = current array size, n = number of elements in array.

• Deleting when more than half full (still half full after):

• amortized cost = 1 +

Φ(Di) = {2n − L if T at least half full
L /2 − n if T at less than half full

💰

💰

💰

💰

n = 12, L = 16

x x x x x x x x x x x x
💰

💰

n = 11, L = 16

💰

💰 = -1

x x x x x x x x x x x

-
💰

💰

Dynamic tables

• Doubling. If the table is full (number of elements equal to size of array) copy
the elements to a new array of double size.

• Halving. If the table is a quarter full copy the elements to a new array of half
the size

• Potential function.

•

• L = current array size, n = number of elements in array.

• Deleting when half full (not half full after):

• amortized cost = 1 +

Φ(Di) = {2n − L if T at least half full
L /2 − n if T at less than half full

n = 8, L = 16

x x x x x x x x 💰

n = 7, L = 16

💰 = 2

x x x x x x x

Dynamic tables

• Doubling. If the table is full (number of elements equal to size of array) copy
the elements to a new array of double size.

• Halving. If the table is a quarter full copy the elements to a new array of half
the size

• Potential function.

•

• L = current array size, n = number of elements in array.

• Deleting in when less than half full (but still a quarter full after):

• amortized cost = 1 +

Φ(Di) = {2n − L if T at least half full
L /2 − n if T at less than half full

💰

n = 6, L = 16
x x x x x x x

💰

n = 7, L = 16

💰 = 2

x x x x x x

Potential Method

• Summary:

1. Pick a potential function, , that will work (art).

2. Use potential function to bound the amortized cost of the operations
you're interested in.

3. Show for all .

• Techniques to find potential functions: if the actual cost of an operation is
high, then decrease in potential due to this operation must be large, to keep
the amortized cost low.

Φ

Φ(Di) ≥ 0 i

