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Today

• Amortized analysis


• Multipop-stack


• Incrementing a binary counter


• Dynamic tables

Dynamic tables

• Problem.  Have to assign size of table at initialization.

• Goal. Only use space Θ(n) for an array with n elements.

• Applications. Stacks, queues, hash tables,….


• Can insert and delete elements at the end.
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Dynamic tables

• First attempt. 

• Insert: 


• Create a new table of size n+1.

• Move all elements to the new table.

• Delete old table.


• Size of table = number of elements


• Too expensive.

• Have to copy all elements to a new array each time.

• Insertion of N elements takes time proportional to: 1 + 2 + ······ + n = Θ(n2).


• Goal. Ensure size of array does not change to often.
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Dynamic tables

• Doubling. If the array is full (number of elements equal to size of array) copy 
the elements to a new array of double size.


• Consequence. Insertion of n elements take time:


• n + number of reinsertions = n + 1 + 2 + 4 + 8 + ···· + 2log n < 3n.


• Space: Θ(n).
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Example: Stack with MultiPop

• Stack with MultiPop.

• Push(e): push element e onto stack.

• MultiPop(k): pop top k elements from the stack


• Worst case: Implement via linked list or array.

• Push: O(1).

• MultiPop: O(k).


• Can prove total cost is no more than 2n.

Stack: Aggregate Analysis

• Amortized analysis. Sequence of n Push and MultiPop operations.

• Each object popped at most once for each time it is pushed.

• #pops on non-empty stack ≤ #Push operations ≤ n.

• Total time O(n).

Binary counter



Amortized Analysis

• Amortized analysis. 


• Average running time per operation over a worst-case sequence of 
operations. 


• Methods.


• Summation (aggregate) method


• Accounting (tax) method


• Potential method

Summation (Aggregate) method

• Summation. 


• Determine total cost. 


• Amortized cost = total cost/#operations.


• Analysis of doubling strategy (without deletions):


• Total cost: n + 1 + 2 + 4 + ... + 2log n = Θ(n).


• Amortized cost per insert: Θ(1).

Stack: Aggregate Analysis

• Amortized analysis. Sequence of n Push and MultiPop operations.

• Each object popped at most once for each time it is pushed.

• #pops on non-empty stack ≤ #Push operations ≤ n.

• Total time O(n).


• Amortized cost per operation: 2n/n = 2.

Accounting method

• Accounting/taxation. 


• Assign a cost to each type of operation that is different from actual cost.


•  = cost of operation 


•  = amortized cost of operation 


• Need:               for any sequence of  operations.


• If ,   where : Assign the extra credit with elements in the 
data structure.


• If ,   where : Use  credits stored in the data structure.
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Stack: Accounting Method

• Amortized analysis. Sequence of n Push and MultiPop operations.

• Pay 2 credits for each Push. 

• Keep 1 credit on each element on the stack.


• Amortized cost per operation: 


• Push: 2


• MultiPop: 1 (to pay for pop on empty stack). 

Binary counter

Dynamic Tables: Accounting Method

• Analysis: Allocate 2 credits to each element when inserted.


• All elements in the array that is beyond the middle have 2 credits.


• Table not full: insert costs 1, and we have 2 credits to save.


• table full, i.e., doubling: half of the elements have 2 credits each. Use these 
to pay for reinsertion of all in the new array.


• Amortized cost per operation: 3.
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Dynamic tables with deletions

• Halving (first attempt). If the array is half full copy the elements to a new array 
of half the size.


• Consequence. The array is always between 50% and 100% full. But risk to 
use too much time (double or halve every time).
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Dynamic tables

• Halving. If the array is a quarter full copy the elements to a new array of half 
the size.


• Consequence. The array is always between 25% and 100% full.
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Potential method

• Potential method. Define a potential function for the data structure that is 
initially zero and always non-negative.


• Prepaid credit (potential) associated with the data structure (money in the 
bank).


• Ensure there is always enough “money in the bank” (non-negative potential).


• Amortized cost  of an operation: actual cost  plus change in potential.


• 


• Thus:


̂ci ci

̂ci = ci + Φ(Di) − Φ(Di−1)

m

∑
i

̂ci =
m

∑
i

(ci + Φ(Di) − Φ(Di−1)) =
m

∑
i

ci + Φ(Dm) − Φ(D0) ≥
m

∑
i

ci

Stack: Potential Method

• Amortized analysis. Sequence of  Push and MultiPop operations.


• elements on the stack


• stack after th operation


• 


• Amortized cost per operation: 


• Push:     


• Pop:     


• Multipop(k): 

n
Φ(S) = #
Si = i
̂ci = ci + Φ(Si) − Φ(Si−1)

̂ci = 1 + Φ(Si) − Φ(Si−1) = 1 + (s + 1) − s = 2

̂ci = 1 + Φ(Si) − Φ(Si−1) = 1 + (s − 1) − s = 0

̂ci = 1 + Φ(Si) − Φ(Si−1) = k + (s − k) − s = 0

Binary Counter

• Amortized analysis. Sequence of  increments.


• 1’s in the counter


• binary counter after th operation


• 


• Amortized cost per increment: 1’s flipped to 0 in the th operation. 


• 


• 


•  

n
Φ(B) = #
Bi = i
̂ci = ci + Φ(Bi) − Φ(Bi−1)

ti = # i

ci = ti + 1

Φ(Bi) − Φ(Bi−1) = − ti + 1

̂ci = ti + 1 − ti + 1 = 2



Dynamic tables

• Doubling. If the table is full (number of elements equal to size of array) copy 
the elements to a new array of double size.


• Halving. If the table is a quarter full copy the elements to a new array of half 
the size


• Potential function. 


•  


• L = current array size, n = number of elements in array.

Φ(Di) = {2n − L if T at least half full
L/2 − n if T at less than half full

Dynamic tables

• Doubling. If the table is full (number of elements equal to size of array) copy 
the elements to a new array of double size.


• Halving. If the table is a quarter full copy the elements to a new array of half 
the size


• Potential function. 


• 


• L = current array size, n = number of elements in array.


• Inserting when less than half full and still less than half full after insertion:


• amortized cost =  1 +  

Φ(Di) = {2n − L if T at least half full
L /2 − n if T at less than half full
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Dynamic tables

• Doubling. If the table is full (number of elements equal to size of array) copy 
the elements to a new array of double size.


• Halving. If the table is a quarter full copy the elements to a new array of half 
the size


• Potential function. 


• 


• L = current array size, n = number of elements in array.


• Inserting when less than half full before and half full after: 


• amortized cost =  1 +

Φ(Di) = {2n − L if T at least half full
L /2 − n if T at less than half full
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Dynamic tables

• Doubling. If the table is full (number of elements equal to size of array) copy 
the elements to a new array of double size.


• Halving. If the table is a quarter full copy the elements to a new array of half 
the size


• Potential function. 


• 


• L = current array size, n = number of elements in array. 


• Inserting when at least half full, but not full:


• amortized cost =  1 +    

Φ(Di) = {2n − L if T at least half full
L /2 − n if T at less than half full
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Dynamic tables

• Doubling. If the table is full (number of elements equal to size of array) copy 
the elements to a new array of double size.


• Halving. If the table is a quarter full copy the elements to a new array of half 
the size


• Potential function. 


• 


• L = current array size, n = number of elements in array. 


• Inserting in full table and doubling


• amortized cost =  9 + 

Φ(Di) = {2n − L if T at least half full
L /2 − n if T at less than half full
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Dynamic tables

• Doubling. If the table is full (number of elements equal to size of array) copy 
the elements to a new array of double size.


• Halving. If the table is a quarter full copy the elements to a new array of half 
the size


• Potential function. 


• 


• L = current array size, n = number of elements in array.


• Deleting in a quarter full table and halving


• amortized cost =  3 + 

Φ(Di) = {2n − L if T at least half full
L /2 − n if T at less than half full
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Dynamic tables

• Doubling. If the table is full (number of elements equal to size of array) copy 
the elements to a new array of double size.


• Halving. If the table is a quarter full copy the elements to a new array of half 
the size


• Potential function. 


• 


• L = current array size, n = number of elements in array.


• Deleting when more than half full (still half full after): 


• amortized cost =  1 +    

Φ(Di) = {2n − L if T at least half full
L /2 − n if T at less than half full
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Dynamic tables

• Doubling. If the table is full (number of elements equal to size of array) copy 
the elements to a new array of double size.


• Halving. If the table is a quarter full copy the elements to a new array of half 
the size


• Potential function. 


• 


• L = current array size, n = number of elements in array. 


• Deleting when half full (not half full after): 


• amortized cost =  1 +    

Φ(Di) = {2n − L if T at least half full
L /2 − n if T at less than half full
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Dynamic tables

• Doubling. If the table is full (number of elements equal to size of array) copy 
the elements to a new array of double size.


• Halving. If the table is a quarter full copy the elements to a new array of half 
the size


• Potential function. 


• 


• L = current array size, n = number of elements in array. 


• Deleting in when less than half full (but still a quarter full after):


• amortized cost =  1 +    

Φ(Di) = {2n − L if T at least half full
L /2 − n if T at less than half full
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Potential Method

• Summary:


1. Pick a potential function, , that will work (art).


2. Use potential function to bound the amortized cost of the operations 
you're interested in.


3. Show  for all .


• Techniques to find potential functions: if the actual cost of an operation is 
high, then decrease in potential due to this operation must be large, to keep 
the amortized cost low.

Φ

Φ(Di) ≥ 0 i


