
Philip Bille

Amortized Analysis
• Amortized Analysis

• Aggregate Method

• Accounting Method

• Potential Method

Amortized Analysis
• Amortized Analysis

• Aggregate Method

• Accounting Method

• Potential Method

Amortized Analysis
• Idea.

• Analyse of data structure operations whose time complexity vary over long sequences of
operations.

• Standard analysis may be too pessimistic, amortized analysis gives a more refined analysis.

• Definition.

• Let T(m) be the time complexity for a worst-case sequence of m operations on some data

structure D. The amortized time complexity of an operation is T(m)/m.

Amortized Analysis
• Applications.

• Algorithms that use data structures. Total time is important, not individual operations.

• Examples: Minimum spanning tree algorithms, Dijkstra's shortest path algorithm, ...

• Simple and practical. Often simpler and faster than worst-case versions.

• Goals.

• Techniques for showing bounds on amortized complexity.

• New data structures and data structure design techniques.

Amortized Analysis
• Amortized Analysis

• Aggregate Method

• Accounting Method

• Potential Method

Aggregate Method
• Aggregate method.

• Identify a worst-case sequence of m operations.

• Compute the total time complexity T(m) of the sequence.

• Compute T(m)/m as the amortized time complexity.

Stack
• Stack with MultiPop. Maintain a sequence (stack) S supporting the following operations:

• PUSH(x): add x to S.

• MULTIPOP(k): remove and return the k most recently added elements in S.

• POP() = MULTIPOP(1).

• Assume POP/MULTIPOP always has enough elements on stack.

Stack
• Stack with MultiPop. Maintain a stack S supporting PUSH(x) and MULTIPOP(k).

• Consider a sequence of m operations.

• Standard analysis.

• PUSH in O(1) time.

• MultiPop in O(k) = O(m) time.

• Amortized analysis.

• An element can only be POPped once for each time it is PUSHed.

• ⇒ Total number of POPs is ≤ total number of PUSHes ≤ m.

• ⇒ Total time is O(m)

• ⇒ Amortized time of MULTIPOP is O(1).

Amortized Analysis
• Amortized Analysis

• Aggregate Method

• Accounting Method

• Potential Method

Amortized Cost

• Actual cost.

• ci = actual cost of operation i = time complexity of operation i.

• Amortized cost.

• Assign a cost ĉi to operation i.

• ĉi is an amortized cost for D if for all sequences O = o1, ..., om.

•

• If ĉi is an amortized cost ⇒ ĉi is also amortized running time.

• Challenge. How to find a good amortized cost?

𝗆

∑
𝗂=𝟣

̂𝖼𝗂 ≥
𝗆

∑
𝗂=𝟣

𝖼𝗂

D0 D1 D2 D3 DmDm-1....

o1 o2 o3 om

Accounting Method
• Accounting method.

• Assign a cost ĉi to each operation.

• ĉi > ci: store the difference as credits to objects in the data structure.

• ĉi < ci: use the stored credits to pay for operation.

• Show that cost is an amortized cost ⇒ amortized cost is amortized running time.

• Challenge. How to find a good credit scheme?

Stack
• Stack with MultiPop. Maintain a stack S supporting PUSH(x) and MULTIPOP(k).

• Costs.

• A credit pays for a PUSH or POP of an element.

• PUSH(x): use 1 credit to PUSH element. Assign 1 credit to element.

• MULTIPOP(k): use stored credits on top k elements to pay.

• Amortized analysis.

• Always enough credits to pay for POP/MULTIPOP.

•
⇒

• ⇒ Assigned cost are amortized costs.

• ⇒ Amortized running time of MULTIPOP is O(1).

𝗆

∑
𝗂=𝟣

̂𝖼𝗂 ≥
𝗆

∑
𝗂=𝟣

𝖼𝗂

Actual
Cost

Assigned
Cost

PUSH 1 2

MULTIPOP k 0

Dynamic Ordered Sets
• Dynamic Ordered Sets. Maintain a dynamic set S of numbers supporting the following

operations.

• SEARCH(x): return true if x ∈ S.

• PREDECESSOR(x): return the largest element in S that is ≤ x.

• SUCCESSOR(x): return the smallest element in S that is ≥ x.

• INSERT(x): add x to S.

• DELETE(x): remove x from S.

3 5 6 10 12 20 24

PREDECESSOR SUCCESSORx

Dynamic Ordered Sets
• Applications.

• Dictionaries, indexes, databases, filesystem, ...

• What solutions do we know?

Dynamic Binary Search
• Dynamic binary search.

• Maintain arrays A0, A1, A2, ..., Ah-1. Ai has size 2i and h ≈ log (n).

• Each array is either full or empty.

• Full arrays correspond to the binary representation of n = |S|.

• Each full array stores elements from S in sorted order.

A0

A1

A2

A3

A4

n = 2310 = 101112

Dynamic Binary Search
• SEARCH(x): Do binary search in each array.

• Time. O(log2 n).

• Similar idea for PREDECESSOR and SUCCESSOR.

A0

A1

A2

A3

A4

n = 2310 = 101112

Dynamic Binary Search
• INSERT(x):

• If A0 is empty, fill it with x and stop.

• Create singleton array containing x. Merge arrays pairwise top-down until we fill empty array.

• Corresponds to incrementing a binary number.

A0

A1

A2

A3

A4

n = 2310 = 101112 A0

A1

A2

A3

A4

n = 2410 = 110002x A0

A1

A2

x

Dynamic Binary Search

• Standard analysis.

• Create singleton array: O(1) time.

• Merge arrays A0,…,Ak-1: O(20 + 21 + ... + 2k) = O(2k+1 - 1) = O(n) time.

• ⇒ O(n) time in total.

A0

A1

A2

x

Dynamic Binary Search
• Observation.

• Most insertions are fast.

• Elements always start at top and move down monotonically.

A0

A1

A2

A3

A4

n = 2310 = 101112 A0

A1

A2

A3

A4

n = 2410 = 110002x

Dynamic Binary Search
• Costs.

• A credit pays for a single element being part of a merge.

• INSERT(x): Assign h-1 credits to element. Use credits to pay for merges.

A0

A1

A2

A3

A4

A0

A1

A2

x

A0

A1

A2

A3

A4

Dynamic Binary Search
• Amortized analysis

• Enough credits to pay for merges ⇒ assigned cost are amortized costs.

• ⇒ Amortized running time of INSERT is h-1 = O(log n).

A0

A1

A2

A3

A4

A0

A1

A2

A3

A4

Dynamic Binary Search
• Dynamic binary search.

• SEARCH, PREDECESSOR, and SUCCESSOR in O(log2 n) time.

• INSERT and DELETE in O(log n) amortized time.

• With fractional cascading technique can do SEARCH, PREDECESSOR, and SUCCESSOR in O(log n)
time.

• Key component in database indexes called a log-structured merge.

• General idea for transforming static data structures into dynamic data structures.

Amortized Analysis
• Amortized Analysis

• Aggregate Method

• Accounting Method

• Potential Method

Potential Method

• Potential function.

• Define a potential function Φ(D) that maps (the state of) data structure D to a real value.

• Require that Φ(Di) ≥ 0 for all i and Φ(D0) = 0.

• Assign cost ĉi = ci + Φ(Di) - Φ(Di-1).

• Corresponds to potential energy.

• Amortized cost.

• ĉi is an amortized cost:

•

𝗆

∑
𝗂=𝟣

̂𝖼𝗂 =
𝗆

∑
𝗂=𝟣

(𝖼𝗂 + Φ(𝖣𝗂) − Φ(𝖣𝗂−𝟣)) =
𝗆

∑
𝗂=𝟣

𝖼𝗂 + Φ(𝖣𝗆) − Φ(𝖣𝟢) ≥
𝗆

∑
𝗂=𝟣

𝖼𝗂

D0 D1 D2 D3 DmDm-1....

o1 o2 o3 om

Potential Method
• Potential method.

• Define a potential function Φ(D).

• Compute the corresponding amortized cost ⇒ amortized cost is amortized running time.

• Challenge. How to find a good potential function?

Stack
• Stack with MultiPop. Maintain a stack S supporting PUSH(x) and MULTIPOP(k).

• Potential function.

• Define Φ(Di) = number of elements on stack.

• Φ(Di) ≥ 0 for all i and Φ(D0) = 0.

• Amortized analysis.

• PUSH(x): ĉi = ci + Φ(Di) - Φ(Di-1) = 1 + 1 = 2.

• MULTIPOP(k): ĉi = ci + Φ(Di) - Φ(Di-1) = k - k = 0.

• ⇒ amortized running time of MULTIPOP is O(1).

Dynamic Binary Search
• Dynamic binary search.

• Maintain arrays A0, A1, A2, ..., Ah-1. Ai has size 2i and h ≈ log (n).

• Each array is either full or empty.

• Full arrays correspond to the binary representation of n = |S|.

• Each full array stores elements from S in sorted order.

A0

A1

A2

A3

A4

n = 2310 = 101112

Dynamic Binary Search
• Potential function. Let bh-1bh-2…b0 be the binary representation of n and define

•

• Intuition. Individual elements have potential corresponding to their height.

Φ(𝖣) =
𝗁−𝟣

∑
𝗃=𝟢

𝖻𝗃 ⋅ 𝟤𝗃 ⋅ ((𝗁 − 𝟣) − 𝗃)

A0

A1

A2

A3

A4

n = 2310 = 101112 b0 · 20 · (h-1) = 1·1·4 = 4

b1 · 21 · (h-2) = 1·2·3 = 6

b2 · 22 · (h-3) = 1·4·2 = 8

b3 · 23 · (h-4) = 0·8·1 = 0

b4 · 24 · (h-5) = 1·16·0 = 0

Φ

A0

A1

A2

A3

A4

Dynamic Binary Search
• Amortized analysis (case 1). No merges.

• Actual cost: .

• Increase in potential:

•

• Amortized cost.

•

𝖼𝗂 = 𝟣

Φ(𝖣𝗂) − Φ(𝖣𝗂−𝟣) = 𝟤𝟢(𝗁 − 𝟣) = 𝗁 − 𝟣

̂𝖼𝗂 = 𝖼𝗂 + Φ(𝖣𝗂) − Φ(𝖣𝗂−𝟣) = 𝟣 + 𝗁 − 𝟣 = 𝗁 = 𝖮(log 𝗇)

Φ(𝖣) =
𝗁−𝟣

∑
𝗃=𝟢

𝖻𝗃 ⋅ 𝟤𝗃 ⋅ ((𝗁 − 𝟣) − 𝗃)

Dynamic Binary Search
• Amortized analysis (case 2). Merge arrays A0,…,Ak-1.

•
Actual cost: .

• Decrease in potential:

•

• Amortized cost.

•

𝖼𝗂 =
𝗄

∑
𝗃=𝟢

𝟤𝗃 = 𝟤𝗄+𝟣 − 𝟣

𝗄−𝟣

∑
𝗃=𝟢

𝟤𝗃(𝗄 − 𝗃) = 𝗄 ⋅
𝗄−𝟣

∑
𝗃=𝟢

𝟤𝗃 −
𝗄−𝟣

∑
𝗃=𝟢

𝗃 ⋅ 𝟤𝗃

= 𝗄 ⋅ (𝟤𝗄 − 𝟣) − ((𝗄 − 𝟤)𝟤𝗄 + 𝟤)
= 𝟤𝗄+𝟣 − 𝗄 − 𝟤

̂𝖼𝗂 = 𝖼𝗂 + Φ(𝖣𝗂) − Φ(𝖣𝗂−𝟣)
= 𝟤𝗄+𝟣 − 𝟣 − (𝟤𝗄+𝟣 − 𝗄 − 𝟤) = 𝗄 + 𝟣 = 𝖮(log 𝗇)

Φ(𝖣) =
𝗁−𝟣

∑
𝗃=𝟢

𝖻𝗃 ⋅ 𝟤𝗃 ⋅ ((𝗁 − 𝟣) − 𝗃)

A0

A1

A2

A3

A4

20 · (k-0) = 1·3

21 · (k-1) = 2·2

22 · (k-2) = 4·1

Dynamic Binary Search
• ⇒ Amortized running time of INSERT is O(log n) in both cases.

• Dynamic binary search.

• SEARCH, PREDECESSOR, and SUCCESSOR in O(log2 n) time.

• INSERT and DELETE in O(log n) amortized time.

Amortized Analysis
• Amortized Analysis

• Aggregate Method

• Accounting Method

• Potential Method

