

Amortized Analysis

- Amortized Analysis
- Aggregate Method
- Accounting Method
- Potential Method

Philip Bille

Amortized Analysis

- Amortized Analysis
- Aggregate Method
- Accounting Method
- Potential Method

Amortized Analysis

- **Idea.**
 - Analyse of data structure operations whose time complexity vary over long sequences of operations.
 - Standard analysis may be too pessimistic, **amortized analysis** gives a more refined analysis.
- **Definition.**
 - Let $T(m)$ be the time complexity for a **worst-case sequence** of m operations on some data structure D. The amortized time complexity of an operation is $T(m)/m$.

Amortized Analysis

- **Applications.**
 - **Algorithms that use data structures.** Total time is important, not individual operations.
 - Examples: Minimum spanning tree algorithms, Dijkstra's shortest path algorithm, ...
 - **Simple and practical.** Often simpler and faster than worst-case versions.
- **Goals.**
 - Techniques for showing bounds on amortized complexity.
 - New data structures and data structure design techniques.

Amortized Analysis

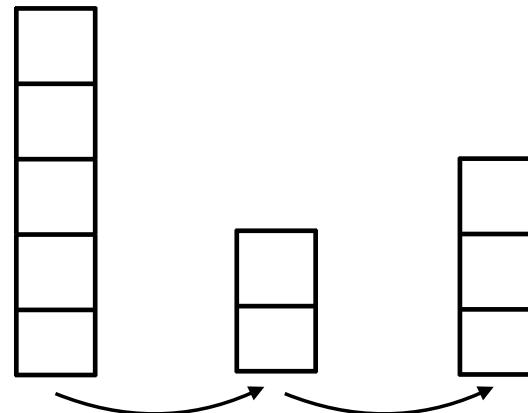
- Amortized Analysis
- Aggregate Method
- Accounting Method
- Potential Method

Aggregate Method

- [Aggregate method.](#)
 - Identify a worst-case sequence of m operations.
 - Compute the total time complexity $T(m)$ of the sequence.
 - Compute $T(m)/m$ as the amortized time complexity.

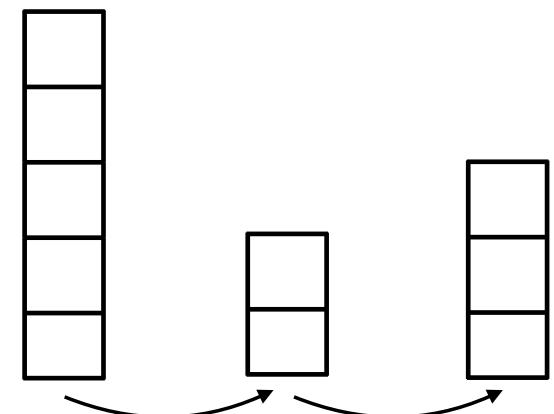
Stack

- **Stack with MultiPop.** Maintain a sequence (stack) S supporting the following operations:
 - $\text{PUSH}(x)$: add x to S .
 - $\text{MULTIPOP}(k)$: remove and return the k most recently added elements in S .
 - $\text{POP}() = \text{MULTIPOP}(1)$.
- Assume $\text{POP}/\text{MULTIPOP}$ always has enough elements on stack.



Stack

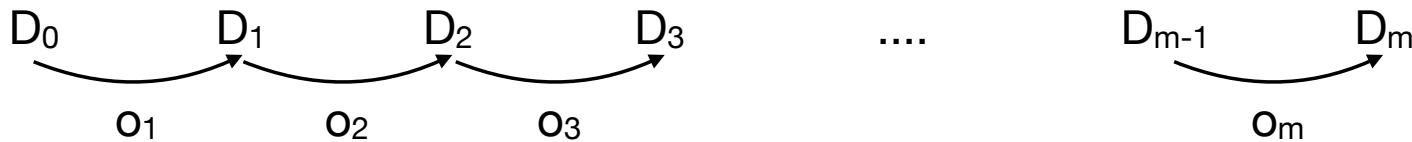
- **Stack with MultiPop.** Maintain a stack S supporting $\text{PUSH}(x)$ and $\text{MULTIPOP}(k)$.
- Consider a sequence of m operations.
- **Standard analysis.**
 - PUSH in $O(1)$ time.
 - MultiPop in $O(k) = O(m)$ time.
- **Amortized analysis.**
 - An element can only be Popped once for each time it is Pushed .
 - \Rightarrow Total number of POPs is \leq total number of $\text{PUSHes} \leq m$.
 - \Rightarrow Total time is $O(m)$
 - \Rightarrow Amortized time of MULTIPOP is $O(1)$.



Amortized Analysis

- Amortized Analysis
- Aggregate Method
- Accounting Method
- Potential Method

Amortized Cost



- **Actual cost.**
 - c_i = **actual cost** of operation i = time complexity of operation i .
- **Amortized cost.**
 - **Assign** a cost \hat{c}_i to operation i .
 - \hat{c}_i is an **amortized cost** for D if for **all** sequences $O = o_1, \dots, o_m$.
 - $$\sum_{i=1}^m \hat{c}_i \geq \sum_{i=1}^m c_i$$
 - If \hat{c}_i is an amortized cost $\Rightarrow \hat{c}_i$ is also amortized running time.
- **Challenge.** How to find a good amortized cost?

Accounting Method

- **Accounting method.**
 - Assign a cost \hat{c}_i to each operation.
 - $\hat{c}_i > c_i$: store the difference as **credits** to objects in the data structure.
 - $\hat{c}_i < c_i$: use the stored credits to pay for operation.
 - Show that cost is an amortized cost \Rightarrow amortized cost is amortized running time.

- **Challenge.** How to find a good credit scheme?

Stack

- **Stack with MultiPop.** Maintain a stack S supporting $\text{PUSH}(x)$ and $\text{MULTIPOP}(k)$.

- **Costs.**

- A credit pays for a PUSH or POP of an element.
- $\text{PUSH}(x)$: use 1 credit to PUSH element. Assign 1 credit to element.
- $\text{MULTIPOP}(k)$: use stored credits on top k elements to pay.

	Actual Cost	Assigned Cost
PUSH	1	2
MULTIPOP	k	0

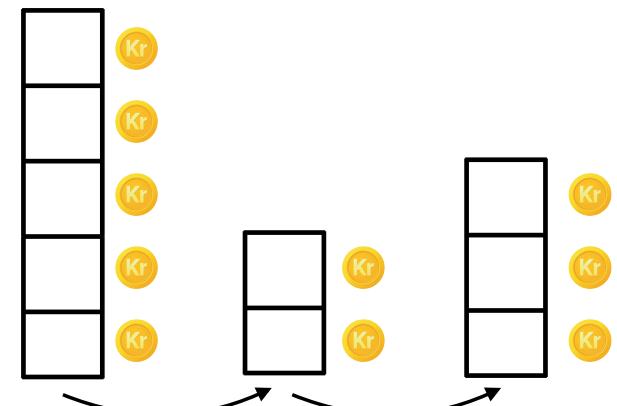
- **Amortized analysis.**

- Always enough credits to pay for $\text{POP}/\text{MULTIPOP}$.

- $$\Rightarrow \sum_{i=1}^m \hat{c}_i \geq \sum_{i=1}^m c_i$$

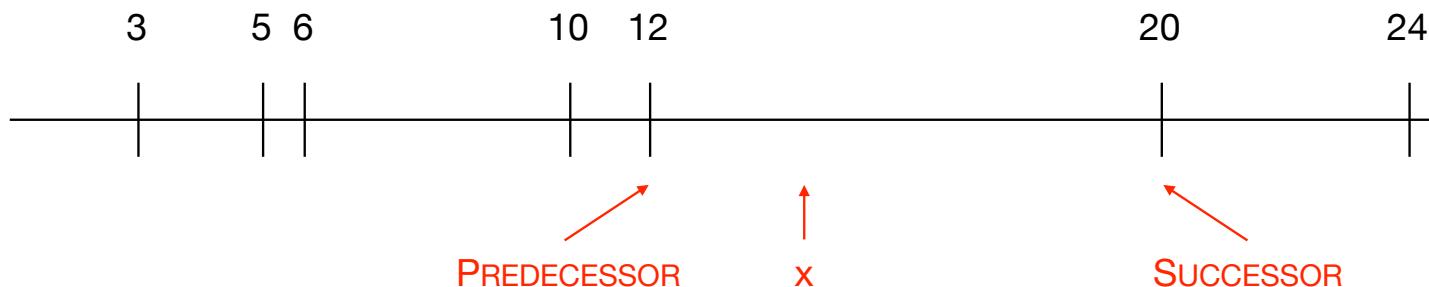
- \Rightarrow Assigned cost are amortized costs.

- \Rightarrow Amortized running time of MULTIPOP is $O(1)$.



Dynamic Ordered Sets

- **Dynamic Ordered Sets.** Maintain a dynamic set S of numbers supporting the following operations.
 - $\text{SEARCH}(x)$: return true if $x \in S$.
 - $\text{PREDECESSOR}(x)$: return the largest element in S that is $\leq x$.
 - $\text{SUCCESSOR}(x)$: return the smallest element in S that is $\geq x$.
 - $\text{INSERT}(x)$: add x to S .
 - $\text{DELETE}(x)$: remove x from S .

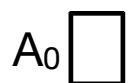


Dynamic Ordered Sets

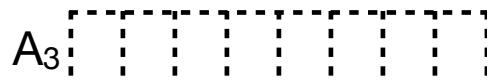
- [Applications](#).
 - Dictionaries, indexes, databases, filesystem, ...
- What solutions do we know?

Dynamic Binary Search

- **Dynamic binary search.**
 - Maintain arrays $A_0, A_1, A_2, \dots, A_{h-1}$. A^i has size 2^i and $h \approx \log(n)$.
 - Each array is either **full** or **empty**.
 - Full arrays correspond to the binary representation of $n = |S|$.
 - Each full array stores elements from S in sorted order.



$$n = 23_{10} = 10111_2$$



Dynamic Binary Search

- $\text{SEARCH}(x)$: Do binary search in each array.

A_0 $n = 23_{10} = 10111_2$

A_1

A_2

A_3

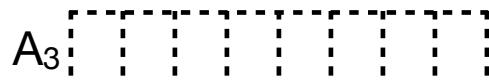
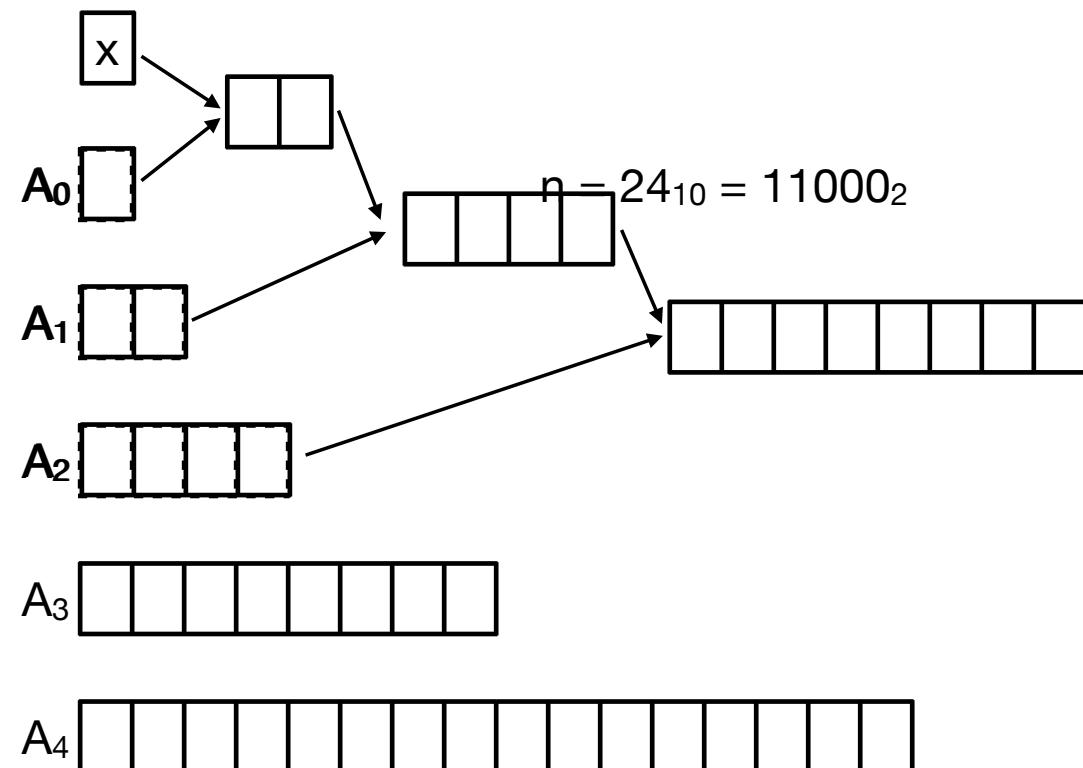
A_4

- **Time.** $O(\log^2 n)$.
- Similar idea for PREDECESSOR and SUCCESSOR.

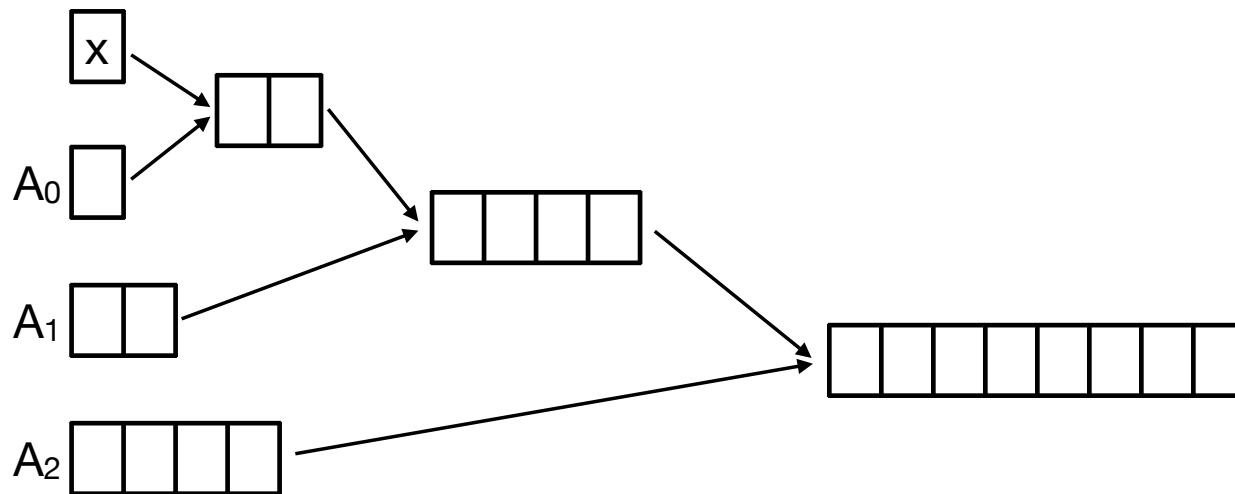
Dynamic Binary Search

- **INSERT(x):**
 - If A_0 is empty, fill it with x and stop.
 - Create singleton array containing x . **Merge** arrays pairwise top-down until we fill empty array.
 - Corresponds to incrementing a binary number.

$$n = 23_{10} = 10111_2$$



Dynamic Binary Search

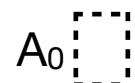
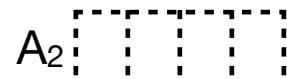


- Standard analysis.
 - Create singleton array: $O(1)$ time.
 - Merge arrays A_0, \dots, A_{k-1} : $O(2^0 + 2^1 + \dots + 2^k) = O(2^{k+1} - 1) = O(n)$ time.
 - $\Rightarrow O(n)$ time in total.

Dynamic Binary Search

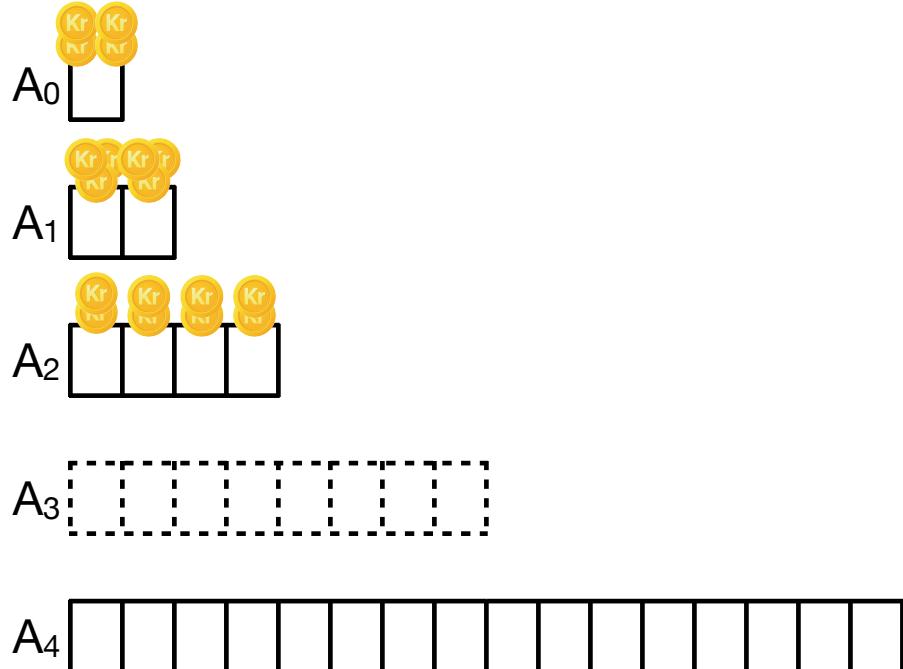
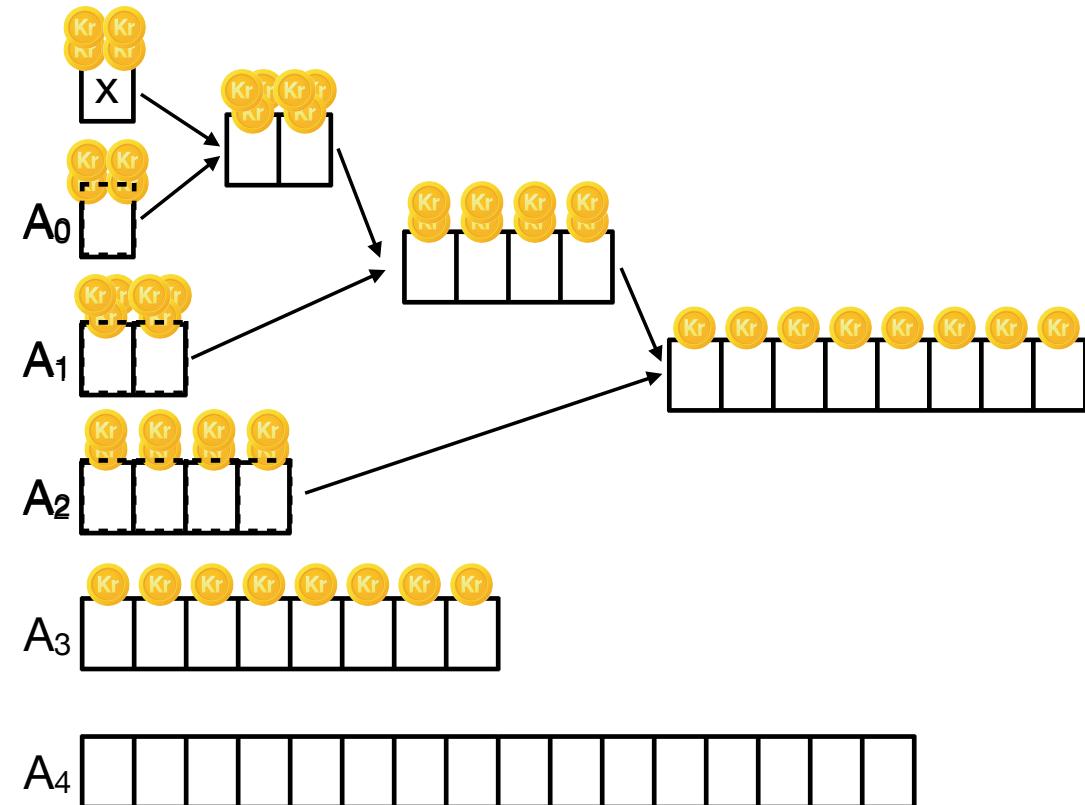
- **Observation.**
 - Most insertions are fast.
 - Elements always start at top and **move down monotonically**.

$$n = 23_{10} = 10111_2$$



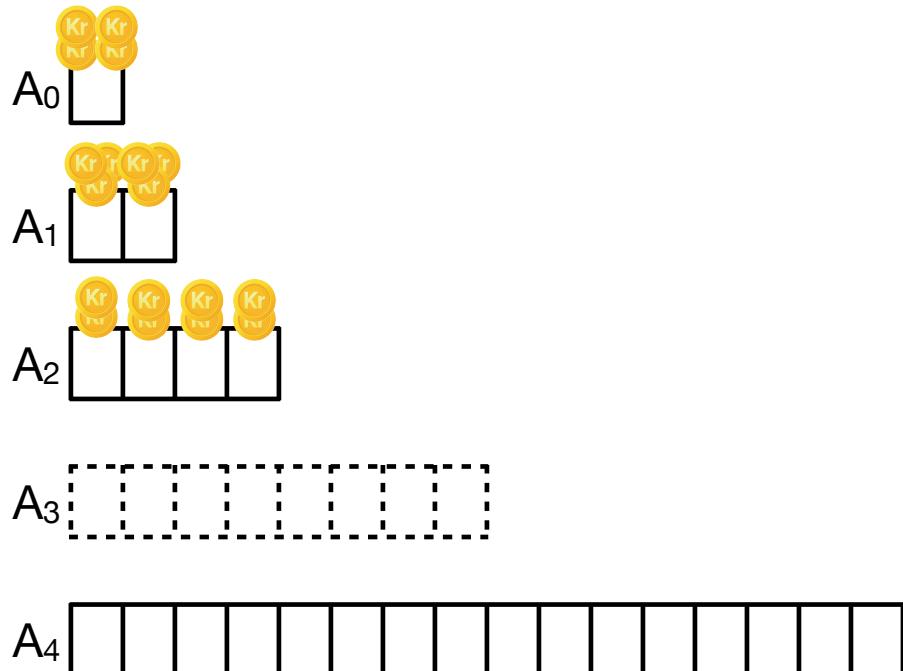
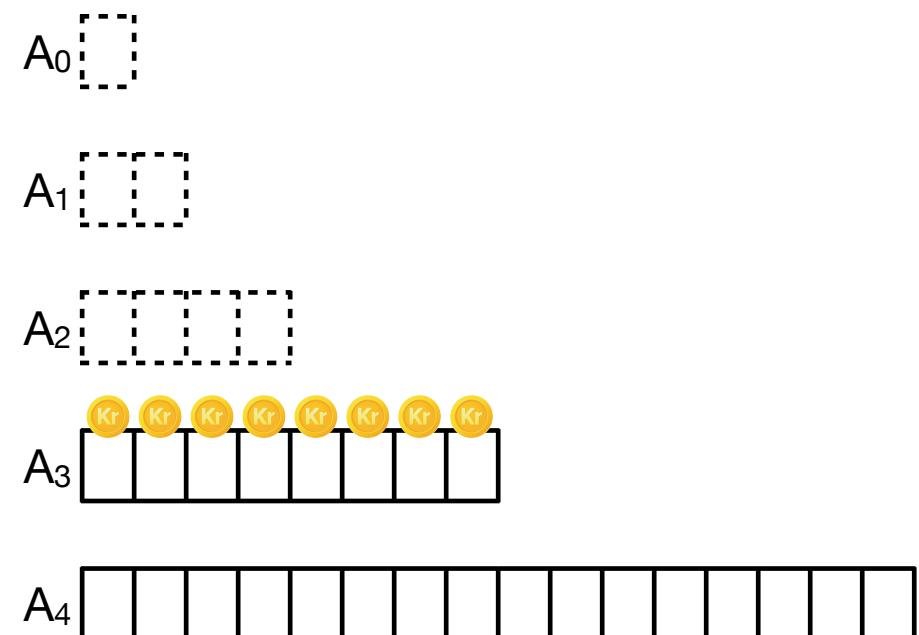
Dynamic Binary Search

- **Costs.**
 - A credit pays for a single element being part of a merge.
 - $\text{INSERT}(x)$: Assign $h-1$ credits to element. Use credits to pay for merges.



Dynamic Binary Search

- **Amortized analysis**
 - Enough credits to pay for merges \Rightarrow assigned cost are amortized costs.
 - \Rightarrow Amortized running time of `INSERT` is $h-1 = O(\log n)$.



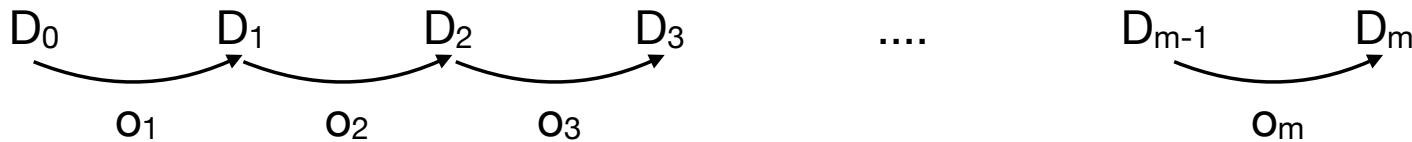
Dynamic Binary Search

- **Dynamic binary search.**
 - SEARCH, PREDECESSOR, and SUCCESSOR in $O(\log^2 n)$ time.
 - INSERT and DELETE in $O(\log n)$ amortized time.
- With **fractional cascading** technique can do SEARCH, PREDECESSOR, and SUCCESSOR in $O(\log n)$ time.
- Key component in database indexes called a **log-structured merge**.
- General idea for transforming static data structures into dynamic data structures.

Amortized Analysis

- Amortized Analysis
- Aggregate Method
- Accounting Method
- Potential Method

Potential Method



- **Potential function.**
 - Define a potential function $\Phi(D)$ that maps (the state of) data structure D to a real value.
 - Require that $\Phi(D_i) \geq 0$ for all i and $\Phi(D_0) = 0$.
 - Assign cost $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$.
 - Corresponds to potential energy.
- **Amortized cost.**
 - \hat{c}_i is an amortized cost:
$$\sum_{i=1}^m \hat{c}_i = \sum_{i=1}^m (c_i + \Phi(D_i) - \Phi(D_{i-1})) = \sum_{i=1}^m c_i + \Phi(D_m) - \Phi(D_0) \geq \sum_{i=1}^m c_i$$

Potential Method

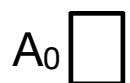
- **Potential method.**
 - Define a potential function $\Phi(D)$.
 - Compute the corresponding amortized cost \Rightarrow amortized cost is amortized running time.
- **Challenge.** How to find a good potential function?

Stack

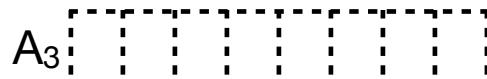
- **Stack with MultiPop.** Maintain a stack S supporting $\text{PUSH}(x)$ and $\text{MULTIPOP}(k)$.
- **Potential function.**
 - Define $\Phi(D_i)$ = number of elements on stack.
 - $\Phi(D_i) \geq 0$ for all i and $\Phi(D_0) = 0$.
- **Amortized analysis.**
 - $\text{PUSH}(x)$: $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = 1 + 1 = 2$.
 - $\text{MULTIPOP}(k)$: $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = k - k = 0$.
 - \Rightarrow amortized running time of MULTIPOP is $O(1)$.

Dynamic Binary Search

- **Dynamic binary search.**
 - Maintain arrays $A_0, A_1, A_2, \dots, A_{h-1}$. A^i has size 2^i and $h \approx \log(n)$.
 - Each array is either **full** or **empty**.
 - Full arrays correspond to the binary representation of $n = |S|$.
 - Each full array stores elements from S in sorted order.



$$n = 23_{10} = 10111_2$$



Dynamic Binary Search

- **Potential function.** Let $b_{h-1}b_{h-2}\dots b_0$ be the binary representation of n and define

$$\Phi(D) = \sum_{j=0}^{h-1} b_j \cdot 2^j \cdot ((h-1) - j)$$

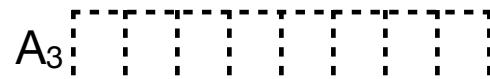
- **Intuition.** Individual elements have potential corresponding to their height.

$$n = 23_{10} = 10111_2$$

$$\Phi = b_0 \cdot 2^0 \cdot (h-1) = 1 \cdot 1 \cdot 4 = 4$$

$$\Phi = b_1 \cdot 2^1 \cdot (h-2) = 1 \cdot 2 \cdot 3 = 6$$

$$\Phi = b_2 \cdot 2^2 \cdot (h-3) = 1 \cdot 4 \cdot 2 = 8$$



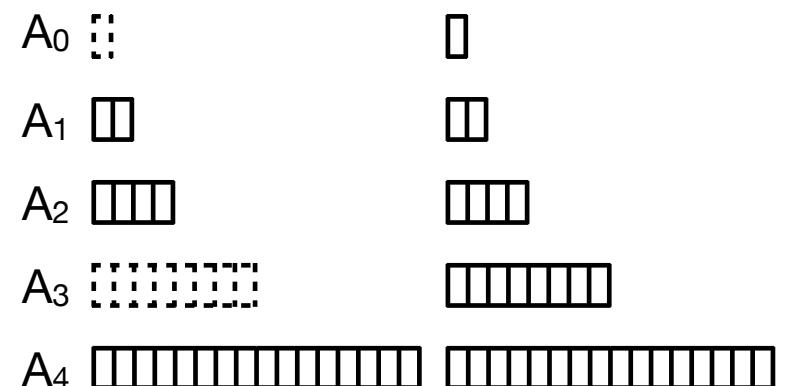
$$\Phi = b_3 \cdot 2^3 \cdot (h-4) = 0 \cdot 8 \cdot 1 = 0$$

$$\Phi = b_4 \cdot 2^4 \cdot (h-5) = 1 \cdot 16 \cdot 0 = 0$$

Dynamic Binary Search

- **Amortized analysis (case 1).** No merges.
 - Actual cost: $c_i = 1$.
 - **Increase** in potential:
 - $\Phi(D_i) - \Phi(D_{i-1}) = 2^0(h - 1) = h - 1$
- **Amortized cost.**
 - $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = 1 + h - 1 = h = O(\log n)$

$$\Phi(D) = \sum_{j=0}^{h-1} b_j \cdot 2^j \cdot ((h - 1) - j)$$



Dynamic Binary Search

- **Amortized analysis (case 2).** Merge arrays A_0, \dots, A_{k-1} .

- Actual cost: $c_i = \sum_{j=0}^k 2^j = 2^{k+1} - 1$.

- **Decrease** in potential:

$$\sum_{j=0}^{k-1} 2^j(k - j) = k \cdot \sum_{j=0}^{k-1} 2^j - \sum_{j=0}^{k-1} j \cdot 2^j$$

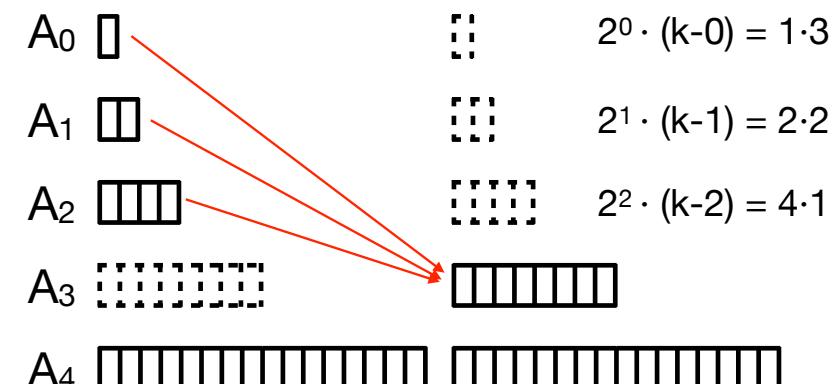
- $= k \cdot (2^k - 1) - ((k - 2)2^k + 2)$
 $= 2^{k+1} - k - 2$

- **Amortized cost.**

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

- $= 2^{k+1} - 1 - (2^{k+1} - k - 2) = k + 1 = O(\log n)$

$$\Phi(D) = \sum_{j=0}^{h-1} b_j \cdot 2^j \cdot ((h - 1) - j)$$



Dynamic Binary Search

- \Rightarrow Amortized running time of `INSERT` is $O(\log n)$ in both cases.
- **Dynamic binary search.**
 - `SEARCH`, `PREDECESSOR`, and `SUCCESSOR` in $O(\log^2 n)$ time.
 - `INSERT` and `DELETE` in $O(\log n)$ amortized time.

Amortized Analysis

- Amortized Analysis
- Aggregate Method
- Accounting Method
- Potential Method