Amortized Analysis

- Amortized Analysis
- Aggregate Method
- Accounting Method
- Potential Method

Philip Bille



Amortized Analysis

- Amortized Analysis



Amortized Analysis

ldea.

- Analyse of data structure operations whose time complexity vary over long sequences of
operations.

- Standard analysis may be too pessimistic, amortized analysis gives a more refined analysis.

Definition.

Let T(m) be the time complexity for a worst-case sequence of m operations on some data
structure D. The amortized time complexity of an operation is T(m)/m.



Amortized Analysis

- Applications.
- Algorithms that use data structures. Total time is important, not individual operations.
- Examples: Minimum spanning tree algorithms, Dijkstra's shortest path algorithm, ...
- Simple and practical. Often simpler and faster than worst-case versions.

- Goals.
- Techniques for showing bounds on amortized complexity.
- New data structures and data structure design techniques.



Amortized Analysis

- Aggregate Method



Aggregate Method

- Aggregate method.
- ldentify a worst-case sequence of m operations.
- Compute the total time complexity T(m) of the sequence.
- Compute T(m)/m as the amortized time complexity.



Stack

- Stack with MultiPop. Maintain a sequence (stack) S supporting the following operations:
- PUSH(x): add x to S.
- MuLtiIPopP(k): remove and return the k most recently added elements in S.
- PoP() = MuLTIPOP(1).

- Assume PorP/MULTIPOP always has enough elements on stack.




Stack

- Stack with MultiPop. Maintain a stack S supporting PUSH(x) and MULTIPOP(k).

- Consider a sequence of m operations.

- Standard analysis.
+ PusH in O(1) time.
- MultiPop in O(k) = O(m) time.

- Amortized analysis.
- An element can only be POPped once for each time it is PuSHed.
- = Total number of POPs is < total number of PUSHes < m.
- = Total time is O(m)
- = Amortized time of MULTIPOP is O(1).




Amortized Analysis

- Accounting Method



Amortized Cost

Do D1 D> D3

01 02 03

- Actual cost.

-+ Cj = actual cost of operation i = time complexity of operation i.

- Amortized cost.
- Assign a cost €jto operation i.

-+ Giis an amortized cost for D if for all sequences O = o4, ..., Om.

m m
EIED
i=1 i=1

If & is an amortized cost = C&iis also amortized running time.

-+ Challenge. How to find a good amortized cost?

Dm—1

Dm



Accounting Method

- Accounting method.
- Assign a cost €i to each operation.
- Ci> ci: store the difference as credits to objects in the data structure.
- Ci< ci: use the stored credits to pay for operation.
- Show that cost is an amortized cost = amortized cost is amortized running time.

- Challenge. How to find a good credit scheme?



Stack

- Stack with MultiPop. Maintain a stack S supporting PUSH(x) and MULTIPOP(k).

+ Costs. Actual |Assigned
- A credit pays for a PUSH or POP of an element. Cost | Cost
- PUSH(x): use 1 credit to PusH element. Assign 1 credit to element. PUSH 1 2

- MuLTIPoP(k): use stored credits on top k elements to pay. MuliPorl K 0

- Amortized analysis.
- Always enough credits to pay for Por/MULTIPOP.

m m
LT *
i=1 =1

- = Assigned cost are amortized costs.
- = Amortized running time of MULTIPOP is O(1).




Dynamic Ordered Sets

- Dynamic Ordered Sets. Maintain a dynamic set S of numbers supporting the following
operations.

- SEARCH(X): return true if x € S.

- PREDECESSOR(X): return the largest element in S that is < x.
- SUCCESSOR(X): return the smallest element in S that is > x.
- INSERT(X): add x to S.

- DELETE(X): remove x from S.

3 56 10 12 20 24

T 1 | |
] N

PREDECESSOR SUCCESSOR

X



Dynamic Ordered Sets

- Applications.
- Dictionaries, indexes, databases, filesystem, ...

- What solutions do we know?



Dynamic Binary Search

- Dynamic binary search.
- Maintain arrays Ao, A1, Ao, ..., An-1. Ai has size 2iand h = log (n).
- Each array is either full or empty.
- Full arrays correspond to the binary representation of n = [S].
- Each full array stores elements from S in sorted order.

Ao n=2310=10111>2

A1

Ao

Aai i b

As




Dynamic Binary Search

+ SEARCH(X): Do binary search in each array.

Ao n=2310=10111>

A1

Ao

Adi i

As

- Time. O(log2 n).
- Similar idea for PREDECESSOR and SUCCESSOR.



Dynamic Binary Search

* INSERT(X):
- If Ao is empty, fill it with x and stop.
- Create singleton array containing x. Merge arrays pairwise top-down until we fill empty array.
- Corresponds to incrementing a binary number.

Ao X TN o \ R="2410 = 11000

A A / \

/

Az Az

Asi i iiiiil As

Ag As




Dynamic Binary Search

EREEN
o TN

e

- Standard analysis.
- Create singleton array: O(1) time.
- Merge arrays Ao,...,Ak-1: O(20 + 21 + ... + 2k) = O(2k+1 - 1) = O(n) time.
+ = 0O(n) time in total.




Dynamic Binary Search

- Observation.

- Most insertions are fast.
- Elements always start at top and move down monotonically.

Ao

A1

Ao

Aai i b

As

n=2310=10111>2

Ao}

A1Er-

Azir-

Az

As

n =241 = 110002




Dynamic Binary Search

- Costs.
- A credit pays for a single element being part of a merge.
- INSERT(X): Assign h-1 credits to element. Use credits to pay for merges.

AW
. A°'"'/LU\[ 11
w[ 1] ST YT
[ 111] A;TTT"/

Asi i iiiiil] AL LTI

Ag As




Dynamic Binary Search

- Amortized analysis
- Enough credits to pay for merges = assigned cost are amortized costs.

- = Amortized running time of INSERT is h-1 = O(log n).

Ao Aoj

a1 miT

A 1111

Asi i iiiiil AL

Ag As




Dynamic Binary Search

Dynamic binary search.
+ SEARCH, PREDECESSOR, and SUCCESSOR in O(log? n) time.
INSERT and DELETE in O(log n) amortized time.

- With fractional cascading technique can do SEARCH, PREDECESSOR, and SUCCESSOR in O(log n)
time.

Key component in database indexes called a log-structured merge.
- General idea for transforming static data structures into dynamic data structures.



Amortized Analysis

- Potential Method



Potential Method

Do D+ Do D3 Dm-1 Dm

O1 02 O3 Om

- Potential function.
- Define a potential function ®(D) that maps (the state of) data structure D to a real value.

- Require that ®(D;) = 0 for all i and ®(Dg) = 0.
- Assign cost €= ci + O(D)) - O(Di-1).
- Corresponds to potential energy.

- Amortized cost.
- ¢iis an amortized cost:

: Zm: G = i (c;+ ®(D) — ®(D_y)) = zm: c,+ ®(D,,) — DD, > zm: c
i=1 i=1 i—1 1



Potential Method

- Potential method.
- Define a potential function ®(D).
- Compute the corresponding amortized cost = amortized cost is amortized running time.

- Challenge. How to find a good potential function?



Stack

- Stack with MultiPop. Maintain a stack S supporting PUSH(x) and MULTIPOP(k).

- Potential function.
- Define ®(Di) = number of elements on stack.
- ®(Dy) = 0 for all i and ®(Do) = 0.

- Amortized analysis.
* PusH(x): Ci=ci+ ®[D) - ®Di-1)=1+1=2.
- MuLTIPOP(K): €i= ci + ®(Di) - ®(Di-1) =k - k = 0.
- = amortized running time of MULTIPOP is O(1).



Dynamic Binary Search

- Dynamic binary search.
- Maintain arrays Ao, A1, Ao, ..., An-1. Ai has size 2iand h = log (n).
- Each array is either full or empty.
- Full arrays correspond to the binary representation of n = [S].
- Each full array stores elements from S in sorted order.

Ao n=2310=10111>2

A1

Ao

Aai i b

As




Dynamic Binary Search

- Potential function. Let bn-1bn-2...bo be the binary representation of n and define

h—1
®D)= ) b;-2-((h—1)-))
j=0
- Intuition. Individual elements have potential corresponding to their height.

O
Ao n=2310=101112 bo-20-(h-1)=1-1-4=4
A by-21-(h-2)=1-2-3=6
Ao bo-22-(h-3)=14.2=8
Aoi i iiiiilil] bs - 28+ (h-4) = 0-8-1 = 0

A bs - 24+ (h-5) = 1-16:0 = 0




Dynamic Binary Search

- Amortized analysis (case 1). No merges.

- Actual cost: ¢; = 1.
- Increase in potential:

- ®(D) - ®(D;,_)=2°h—1)=h-1

- Amortized cost.

h—1
(D)= Y b-2-((h—1)-})
=0

J

. &=c+®D)—DD,_)=1+h—-1=h=0(ogn)

Ao :: 1

A¢ [ [

A> [II1] [I1T]

Az iiirr i (ITITTIT]



Dynamic Binary Search

- Amortized analysis (case 2). Merge arrays Ao,...,Ak-1.

h—1
k - .
Actual cost: ¢; = Z 2l = 2k+1 1, eD) = 2 b;-2-((h—=1)—))
' =0

j=0 .
- Decrease in potential:

k—1 k—1 k—1

Y Ak-j=k- Y 2A-)j-2

j=0 j=0 j=0
=k-(2*=1) = ((k=2)2*+2)

=:2k+1__|<__2

- Amortized cost.

=21 1 (2" —_k-2)=k+1=0(ogn)




Dynamic Binary Search

- = Amortized running time of INSERT is O(log n) in both cases.

- Dynamic binary search.
+ SEARCH, PREDECESSOR, and SUCCESSOR in O(log? n) time.
- INSERT and DELETE in O(log n) amortized time.



Amortized Analysis

- Amortized Analysis
- Aggregate Method
- Accounting Method
- Potential Method



