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Amortized Analysis
• Idea.


• Analyse of data structure operations whose time complexity vary over long sequences of 
operations. 


• Standard analysis may be too pessimistic, amortized analysis gives a more refined analysis. 


• Definition.

• Let T(m) be the time complexity for a worst-case sequence of m operations on some data 

structure D. The amortized time complexity of an operation is T(m)/m.



Amortized Analysis
• Applications.


• Algorithms that use data structures. Total time is important, not individual operations. 

• Examples: Minimum spanning tree algorithms, Dijkstra's shortest path algorithm, ...


• Simple and practical. Often simpler and faster than worst-case versions.


• Goals.

• Techniques for showing bounds on amortized complexity. 

• New data structures and data structure design techniques. 
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Aggregate Method
• Aggregate method.


• Identify a worst-case sequence of m operations. 

• Compute the total time complexity T(m) of the sequence. 

• Compute T(m)/m as the amortized time complexity.



Stack
• Stack with MultiPop. Maintain a sequence (stack) S supporting the following operations: 


• PUSH(x): add x to S. 

• MULTIPOP(k): remove and return the k most recently added elements in S. 

• POP() = MULTIPOP(1).


• Assume POP/MULTIPOP always has enough elements on stack.  



Stack
• Stack with MultiPop. Maintain a stack S supporting PUSH(x) and MULTIPOP(k).


• Consider a sequence of m operations. 


• Standard analysis. 

• PUSH in O(1) time. 

• MultiPop in O(k) = O(m) time. 


• Amortized analysis. 

• An element can only be POPped once for each time it is PUSHed. 

• ⇒ Total number of POPs is ≤ total number of PUSHes ≤ m. 

• ⇒ Total time is O(m) 

• ⇒ Amortized time of MULTIPOP is O(1). 
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Amortized Cost

• Actual cost. 

• ci = actual cost of operation i = time complexity of operation i. 


• Amortized cost. 

• Assign a cost ĉi to operation i. 

• ĉi is an amortized cost for D if for all sequences O = o1, ..., om.


•



• If ĉi is an amortized cost ⇒ ĉi is also amortized running time.  


• Challenge. How to find a good amortized cost? 
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Accounting Method
• Accounting method.


• Assign a cost ĉi to each operation.

• ĉi > ci: store the difference as credits to objects in the data structure. 

• ĉi < ci: use the stored credits to pay for operation.   


• Show that cost is an amortized cost ⇒ amortized cost is amortized running time. 


• Challenge. How to find a good credit scheme? 



Stack
• Stack with MultiPop. Maintain a stack S supporting PUSH(x) and MULTIPOP(k).


• Costs. 

• A credit pays for a PUSH or POP of an element. 

• PUSH(x):  use 1 credit to PUSH element. Assign 1 credit to element. 

• MULTIPOP(k): use stored credits on top k elements to pay. 


• Amortized analysis. 

• Always enough credits to pay for POP/MULTIPOP. 


•
⇒ 


• ⇒ Assigned cost are amortized costs.

• ⇒ Amortized running time of MULTIPOP is O(1). 
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Dynamic Ordered Sets
• Dynamic Ordered Sets. Maintain a dynamic set S of numbers supporting the following 

operations. 

• SEARCH(x): return true if x ∈ S. 

• PREDECESSOR(x): return the largest element in S that is ≤ x. 

• SUCCESSOR(x): return the smallest element in S that is ≥ x. 

• INSERT(x): add x to S. 

• DELETE(x): remove x from S. 
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Dynamic Ordered Sets
• Applications.


• Dictionaries, indexes, databases, filesystem, ... 


• What solutions do we know? 



Dynamic Binary Search
• Dynamic binary search. 


• Maintain arrays A0, A1, A2, ..., Ah-1. Ai has size 2i and h ≈ log (n). 

• Each array is either full or empty. 

• Full arrays correspond to the binary representation of n = |S|. 

• Each full array stores elements from S in sorted order.  
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Dynamic Binary Search
• SEARCH(x): Do binary search in each array. 


• Time. O(log2 n). 

• Similar idea for PREDECESSOR and SUCCESSOR. 
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Dynamic Binary Search
• INSERT(x): 


• If A0 is empty, fill it with x and stop. 

• Create singleton array containing x. Merge arrays pairwise top-down until we fill empty array. 

• Corresponds to incrementing a binary number. 
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Dynamic Binary Search

• Standard analysis.

• Create singleton array: O(1) time.  

• Merge arrays A0,…,Ak-1: O(20 + 21 + ... + 2k) = O(2k+1 - 1) = O(n) time.

• ⇒ O(n) time in total. 
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Dynamic Binary Search
• Observation. 


• Most insertions are fast. 

• Elements always start at top and move down monotonically.
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Dynamic Binary Search
• Costs.


• A credit pays for a single element being part of a merge.

• INSERT(x): Assign h-1 credits to element. Use credits to pay for merges. 
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Dynamic Binary Search
• Amortized analysis


• Enough credits to pay for merges ⇒ assigned cost are amortized costs.


• ⇒ Amortized running time of INSERT is h-1 = O(log n). 
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Dynamic Binary Search
• Dynamic binary search. 


• SEARCH, PREDECESSOR, and SUCCESSOR in O(log2 n) time. 

• INSERT and DELETE in O(log n) amortized time. 


• With fractional cascading technique can do SEARCH, PREDECESSOR, and SUCCESSOR in O(log n) 
time.


• Key component in database indexes called a log-structured merge. 

• General idea for transforming static data structures into dynamic data structures. 
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Potential Method

• Potential function. 

• Define a potential function Φ(D) that maps (the state of) data structure D to a real value. 

• Require that Φ(Di) ≥ 0 for all i and Φ(D0) = 0. 

• Assign cost ĉi = ci + Φ(Di) - Φ(Di-1). 

• Corresponds to potential energy. 


• Amortized cost. 

• ĉi is an amortized cost:


•
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Potential Method
• Potential method. 


• Define a potential function Φ(D). 

• Compute the corresponding amortized cost ⇒ amortized cost is amortized running time.


• Challenge. How to find a good potential function? 



Stack
• Stack with MultiPop. Maintain a stack S supporting PUSH(x) and MULTIPOP(k).


• Potential function.

• Define Φ(Di) = number of elements on stack. 

• Φ(Di) ≥ 0 for all i and Φ(D0) = 0. 


• Amortized analysis. 

• PUSH(x): ĉi = ci + Φ(Di) - Φ(Di-1) = 1 + 1 = 2.

• MULTIPOP(k): ĉi = ci + Φ(Di) - Φ(Di-1) = k - k = 0.

• ⇒ amortized running time of MULTIPOP is O(1). 



Dynamic Binary Search
• Dynamic binary search. 


• Maintain arrays A0, A1, A2, ..., Ah-1. Ai has size 2i and h ≈ log (n). 

• Each array is either full or empty. 

• Full arrays correspond to the binary representation of n = |S|. 

• Each full array stores elements from S in sorted order.  
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Dynamic Binary Search
• Potential function. Let bh-1bh-2…b0 be the binary representation of n and define 


•
 


• Intuition. Individual elements have potential corresponding to their height.
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∑
𝗃=𝟢

𝖻𝗃 ⋅ 𝟤𝗃 ⋅ ((𝗁 − 𝟣) − 𝗃)

A0

A1

A2

A3

A4

n = 2310 = 101112 b0 · 20 · (h-1) = 1·1·4 = 4

b1 · 21 · (h-2) = 1·2·3 = 6

b2 · 22 · (h-3) = 1·4·2 = 8

b3 · 23 · (h-4) = 0·8·1 = 0

b4 · 24 · (h-5) = 1·16·0 = 0

Φ



A0

A1

A2

A3

A4

Dynamic Binary Search
• Amortized analysis (case 1).  No merges. 


• Actual cost: . 

• Increase in potential: 

• 


• Amortized cost.

•
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Dynamic Binary Search
• Amortized analysis (case 2). Merge arrays A0,…,Ak-1. 


•
Actual cost: . 


• Decrease in potential:


•

 


• Amortized cost.


•
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Dynamic Binary Search
• ⇒ Amortized running time of INSERT is O(log n) in both cases.


• Dynamic binary search. 

• SEARCH, PREDECESSOR, and SUCCESSOR in O(log2 n) time. 

• INSERT and DELETE in O(log n) amortized time. 
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