Amortized Analysis

+ Amortized Analysis
- Aggregate Method
+ Accounting Method
- Potential Method

Philip Bille

Amortized Analysis

- Amortized Analysis

Amortized Analysis

- Idea.

- Analyse of data structure operations whose time complexity vary over long sequences of
operations.

-+ Standard analysis may be too pessimistic, amortized analysis gives a more refined analysis.

- Definition.

- Let T(m) be the time complexity for a worst-case sequence of m operations on some data
structure D. The amortized time complexity of an operation is T(m)/m.

Amortized Analysis

- Applications.
+ Algorithms that use data structures. Total time is important, not individual operations.
- Examples: Minimum spanning tree algorithms, Dijkstra's shortest path algorithm, ...
- Simple and practical. Often simpler and faster than worst-case versions.

- Goals.
- Techniques for showing bounds on amortized complexity.
+ New data structures and data structure design techniques.

Amortized Analysis

- Aggregate Method

Aggregate Method

- Aggregate method.
- ldentify a worst-case sequence of m operations.
- Compute the total time complexity T(m) of the sequence.
- Compute T(m)/m as the amortized time complexity.

Stack

-+ Stack with MultiPop. Maintain a sequence (stack) S supporting the following operations:
+ PUSH(x): add x to S.

+ MuLTIPOP(K): remove and return the k most recently added elements in S.
+ Pop() = MuLTIPOP(1).
- Assume POP/MULTIPOP always has enough elements on stack.

_/'v

Stack

- Stack with MultiPop. Maintain a stack S supporting PusH(x) and MULTIPOP(K).

- Consider a sequence of m operations.

- Standard analysis.

+ PUSH in O(1) time.
- MultiPop in O(k) = O(m) time.

+ Amortized analysis.

- An element can only be Popped once for each time it is PusHed.
- = Total number of POPs is < total number of PUsHes < m.

- = Total time is O(m)
+ = Amortized time of MuLTIPOP is O(1).

_/V\/V

Amortized Analysis

+ Accounting Method

Amortized Cost

Dm-1 Dm

Om
+ Actual cost.

ci = actual cost of operation i = time complexity of operation i.

- Amortized cost.
+ Assign a cost &ito operation i.
- Giis an amortized cost for D if for all sequences O = o1,
m m
PEEDN
i=1 i=1

very Om.

- If & is an amortized cost = ¢&iis also amortized running time.

+ Challenge. How to find a good amortized cost?

Accounting Method

- Accounting method.
-+ Assign a cost &; to each operation.

- €i> ci: store the difference as credits to objects in the data structure.
+ &< cit use the stored credits to pay for operation.

Show that cost is an amortized cost = amortized cost is amortized running time

+ Challenge. How to find a good credit scheme?

Stack

+ Amortized analysis.

Stack with MultiPop. Maintain a stack S supporting PUsH(x) and MULTIPOP(k).

- Costs. Actual |Assigned
- A credit pays for a PUsH or PoP of an element. Cost | Cost
- PUSH(x): use 1 credit to PusH element. Assign 1 credit to element. PUSH 1 2
- MuLTIPOP(k): use stored credits on top k elements to pay. A . a0

+ Always enough credits to pay for POP/MULTIPOP.
m m
= Z ¢ > Z c
i=1 i=1

- = Assigned cost are amortized costs.
+ = Amortized running time of MULTIPOP is O(1).

~ T~

Dynamic Ordered Sets

+ Dynamic Ordered Sets. Maintain a dynamic set S of numbers supporting the following
operations.

+ SEARCH(X): return true if x € S.

- PREDECESSOR(x): return the largest element in S that is < x.
+ SUCCESSOR(x): return the smallest element in S that is > x.
+ INSERT(x): add x to S.

+ DELETE(x): remove x from S.

3 56 10 12 20 24
| || [| |
[1 [[I
e ! N
PREDECESSOR X SUCCESSOR

Dynamic Ordered Sets

- Applications.
- Dictionaries, indexes, databases, filesystem, ...

- What solutions do we know?

Dynamic Binary Search

+ Dynamic binary search.
- Maintain arrays Ao, A1, A2, ..., An-1. A has size 2iand h = log (n).
- Each array is either full or empty.
- Full arrays correspond to the binary representation of n = |S].
- Each full array stores elements from S in sorted order.

Ao] n=231p= 101112

Dynamic Binary Search

+ SEARCH(x): Do binary search in each array.

A] n=2310= 101112

- Time. O(log2 n).
- Similar idea for PREDECESSOR and SUCCESSOR.

Dynamic Binary Search

+ INSERT(x):
+ If Ao is empty, fill it with x and stop.
+ Create singleton array containing x. Merge arrays pairwise top-down until we fill empty array.
-+ Corresponds to incrementing a binary number.

BN
HE

Aol] n=2310= 10111, Aol]/ T o

W]
NIEEEEREEEREEENE R EREEERREREREEEEE

Dynamic Binary Search

- Standard analysis.
- Create singleton array: O(1) time.
- Merge arrays Ao,...,Ak-1: O(20 + 21 + ... + 2k) = O(2k+1 - 1) = O(n) time.
+ = O(n) time in total.

Dynamic Binary Search

+ Observation.
+ Most insertions are fast.
- Elements always start at top and move down monotonically.

pol]

n=2310=10111; Ao} | n = 2410 = 11000,

A4||||||||||||||||| AL

Dynamic Binary Search

- Costs.

+ A credit pays for a single element being part of a merge.
- INSERT(x): Assign h-1 credits to element. Use credits to pay for merges.

AT A g

Dynamic Binary Search

Dynamic Binary Search

+ Amortized analysis
- Enough credits to pay for merges = assigned cost are amortized costs.

+ = Amortized running time of INSERT is h-1 = O(log n).

- Dynamic binary search.

+ SEARCH, PREDECESSOR, and SUCCESSOR in O(log? n) time.
+ INSERT and DELETE in O(log n) amortized time.

- With fractional cascading technique can do SEARCH, PREDECESSOR, and SUCCESSOR in O(log n)

time.

- Key component in database indexes called a log-structured merge.
- General idea for transforming static data structures into dynamic data structures.

Amortized Analysis

- Potential Method

Potential Method

Do D1 D2 D3 Dm-1 Dm
N A N4

01 02 03 Om

-+ Potential function.
- Define a potential function ®(D) that maps (the state of) data structure D to a real value.
- Require that ®(Dj) > 0 for all i and ®(Do) = 0.
- Assign cost €= ¢i + O(Dj) - O(Di-1).
- Corresponds to potential energy.

+ Amortized cost.
- & is an amortized cost:
m m m
) &=) (c+®D)-dD_y)) = Z ¢+ ®(D,,) — ®(Dy) > z [

i=1 i=1 i=1 i=1

Potential Method

+ Potential method.
- Define a potential function ®(D).
- Compute the corresponding amortized cost = amortized cost is amortized running time.

+ Challenge. How to find a good potential function?

Stack

- Stack with MultiPop. Maintain a stack S supporting PusH(x) and MULTIPOP(K).

-+ Potential function.
- Define ®(Di) = number of elements on stack.
- ®(Dj) = 0 for all i and ®(Do) = 0.

+ Amortized analysis.
+ PUSH(x): Ci=ci+ ®(D) - (D) =1 +1=2.
+ MuLTIPOP(k): &= ci + ®(D) - D(Di-1) =k - k=0.
- = amortized running time of MuLTIPOP is O(1).

Dynamic Binary Search

+ Dynamic binary search.
- Maintain arrays Ao, A1, A2, ..., An-1. A has size 2iand h = log (n).
- Each array is either full or empty.
- Full arrays correspond to the binary representation of n = |S].
- Each full array stores elements from S in sorted order.

Ao] n=231p= 101112

Dynamic Binary Search

-+ Potential function. Let bn-1bn-2...bo be the binary representation of n and define

h—1
®D) = Y b2 ((h—1)—])

j=0
+ Intuition. Individual elements have potential corresponding to their height.
(0]
A] n=231p=101112 bo-20- (h-1)=1-1-4 =4

bi-21-(h-2)=1-23=6

bs-22- (h-8)=142=8

bs - 23- (h-4) = 0-81 =0

bs-24- (h-5)=1-16:0 =0

Dynamic Binary Search

+ Amortized analysis (case 1). No merges. h—1
- Actual cost: ¢; = 1. (D) = Z b; - 2.((h=1-})

+ Increase in potential: e
- D) —DD;_) =2 —1)=h—1

+ Amortized cost.
. éi =c;+®(D;,) - d(D,_;) =1+h—-1=h=0(ogn)

Ao i il

A m

A, M Im

A DI [

Aq T OIS

Dynamic Binary Search

- Amortized analysis (case 2). Merge arrays Ao, ...,Ak-1.
k

_ Actual cost: ¢; = Z 2 =kt _q,
j=0
+ Decrease in potential:

k=1 k=1 k=1
Zzi(k—j)=k- ZQJ_Zj.Zj
j=0 j=0 j=0

=k- 2= - (k=22+2)

=2k k-2

+ Amortized cost.
éi =c¢;+ ®(D;) — D(D,_,)

=211 -2 —k-2)=k+1=0(logn)

h—1
®D) =Y b-2-((h—1)-])

=0

20. (k-0)=1-3
21 (k-1) =22
22. (k-2) = 41
IBSEREREY [T
A4 I T

Dynamic Binary Search

+ = Amortized running time of INSERT is O(log n) in both cases.

+ Dynamic binary search.
+ SEARCH, PREDECESSOR, and SUCCESSOR in O(log? n) time.
+ INSERT and DELETE in O(log n) amortized time.

Amortized Analysis

- Amortized Analysis
- Aggregate Method
+ Accounting Method
- Potential Method

