Network Flows

Inge Li Gartz

Applications

« Matchings

+ Job scheduling

+ Image segmentation

« Baseball elimination

* Disjoint paths
 Survivable network design

Network Flow

« Truck company: Wants to send as many trucks as possible from s to t. Limit
of number of trucks on each road. 1

Network Flow

« Truck company: Wants to send as many trucks as possible from s to t. Limit
of number of trucks on each road. 1

- Example 1:

« Solution 1: 4 trucks

Network Flow

« Truck company: Wants to send as many trucks as possible from s to t. Limit
of number of trucks on each road. 11

- Example 1:

« Solution 1: 4 trucks

« Solution 2: 5 trucks

Network Flow

« Truck company: Wants to send as many trucks as possible from s to t. Limit
of number of trucks on each road. 11

- Example 1:

« Solution 1: 4 trucks

« Solution 2: 5 trucks

- Example 2: 2

Network Flow

« Truck company: Wants to send as many trucks as possible from s to t. Limit
of number of trucks on each road. 11

- Example 1:

« Solution 1: 4 trucks

« Solution 2: 5 trucks

- Example 2:

« 5 trucks (need to cross river).

Network Flow

« Network flow:

« graph G=(V,E).

« Special vertices s (source) and t (sink).

- s has no edges in and t has no edges out.

« Every edge (e) has a (integer) capacity c(e) = 0.

* Flow:
+ capacity constraint: every edge e has a flow 0 < f(e) < c(e).
+ flow conservation: for all u # s, t: flow into u equals flow out of u.

Z f(’U, u) — Z f(uav)

vi(v,u)eE vi(u,v)eE

* Value of flow f is the sum of flows out of s:

()=), fle)=f"s)

vi(s,v)EE

+ Maximum flow problem: find s-t flow of maximum value

Algorithm

 Find path where we can send more flow.

Algorithm

 Find path where we can send more flow.

Algorithm

 Find path where we can send more flow.

Algorithm

 Find path where we can send more flow.

- Send flow back (cancel flow).

Algorithm

 Find path where we can send more flow.

- Send flow back (cancel flow).

Algorithm

 Find path where we can send more flow.

- Send flow back (cancel flow).

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6 -6
S ¢—@ ® >@ >® o @
f1 < Cq fo>0 fs< c3 fa< Cy f5>0 fe>0

« Can add extra flow: min(c+ - f1, fo, 3 - f3, C4 - 4, {5, fg) = & = bottleneck(P).

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6 -6
S ¢—@ ® >@ >® o @
f1 < Cq fo>0 fs< c3 fa< Cy f5>0 fe>0

« Can add extra flow: min(c+ - f1, fo, 3 - f3, C4 - 4, {5, fg) = & = bottleneck(P).

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6 -6
S ¢—@ ® >@ >® o @
f1 < Cq fo>0 fs< c3 fa< Cy f5>0 fe>0

« Can add extra flow: min(c+ - f1, fo, 3 - f3, C4 - 4, {5, fg) = & = bottleneck(P).

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6 -6
S ¢—@ ® >@ >® o @
f1 < Cq fo>0 fs< c3 fa< Cy f5>0 fe>0

« Can add extra flow: min(c+ - f1, fo, 3 - f3, C4 - 4, {5, fg) = & = bottleneck(P).

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6 -6
S ¢—@ ® >@ >® o @
f1 < Cq fo>0 fs< c3 fa< Cy f5>0 fe>0

« Can add extra flow: min(c+ - f1, fo, 3 - f3, C4 - 4, {5, fg) = & = bottleneck(P).

11

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6 -6
S ¢—@ ® >@ >® o @
f1 < Cq fo>0 fs< c3 fa< Cy f5>0 fe>0

« Can add extra flow: min(c+ - f1, fo, 3 - f3, C4 - 4, {5, fg) = & = bottleneck(P).

11

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6 -6
S ¢—@ ® >@ >® o @
f1 < Cq fo>0 fs< c3 fa< Cy f5>0 fe>0

« Can add extra flow: min(c+ - f1, fo, 3 - f3, C4 - 4, {5, fg) = & = bottleneck(P).

11

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6 -6
S ¢—@ ® >@ >® o @
f1 < Cq fo>0 fs< c3 fa< Cy f5>0 fe>0

« Can add extra flow: min(c+ - f1, fo, 3 - f3, C4 - 4, {5, fg) = & = bottleneck(P).

11

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6 -6
S ¢—@ ® >@ >® o @
f1 < Cq fo>0 fs< c3 fa< Cy f5>0 fe>0

« Can add extra flow: min(c+ - f1, fo, 3 - f3, C4 - 4, {5, fg) = & = bottleneck(P).

11

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6 -6
S ¢—@ ® >@ >® o @
f1 < Cq fo>0 fs< c3 fa< Cy f5>0 fe>0

« Can add extra flow: min(c+ - f1, fo, 3 - f3, C4 - 4, {5, fg) = & = bottleneck(P).

11

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6 -6
S ¢—@ ® >@ >® o @
f1 < Cq fo>0 fs< c3 fa< Cy f5>0 fe>0

« Can add extra flow: min(c+ - f1, fo, 3 - f3, C4 - 4, {5, fg) = & = bottleneck(P).

11

Augmenting Paths

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6 -6
S ¢—@ ® >@ >® o @
f1 < Cq fo>0 fs< c3 fa< Cy f5>0 fe>0

« Can add extra flow: min(c+ - f1, fo, 3 - f3, C4 - 4, {5, fg) = & = bottleneck(P).

11

Augmenting Paths

« Augmenting path (definition different than in CLRS): s-t path where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6 -6
S ¢—@ ® >@ >® o @
f1 < Cq fo>0 fs< c3 fa< Cy f5>0 fe>0

- Can add extra flow: min(c1 - f1, f2, c3 - f3, ca - f4, f5, f6) = & = bottleneck(P).

+ Ford-Fulkerson:
« Find augmenting path, use it
+ Find augmenting path, use it

« Find augmenting path, use it

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -0 +6 +6 -6
S @—® o -
f1 < C1 fo>0 fs< c3 fa<ca fs>0
8
5 3
2
6 8
S > S (1)
2
4 2 5

-6
fe> 0

t

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6
S @—® o -
f1 < C1 fo>0 fs< c3 fa<ca fs>0
L)
8 3
5 2
5/6 5/8
S N i 5/5 o
2
2
4 9

-6
fe> 0

t

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6
S @—® o -
f1 < C1 fo>0 fs< c3 fa<ca fs>0
L)
8 3
5 2
5/6 5/8
S N 5/5 o
2
2
4 9

-6
fe> 0

t

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6
S @—® o -
f1 < C1 fo>0 fs< c3 fa<ca fs>0
ol
3/8 .~ Y/
2 | SA
2
5/6 5/8 -
S N 5/5 G
2
2
4 9

-6
fe> 0

t

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6
S @—® o -
f1 < C1 fo>0 fs< c3 fa<ca fs>0
L)
3/8 3/.
5 3
2
5/6 5/8
S N 5/5 o
2
2
4 9

-6
fe> 0

t

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6
S @—® o -
f1 < C1 fo>0 fs< c3 fa<ca fs>0
L)
3/8 3/.
5 3
2
5/6 5/8

S N 5/5 , o

“— 5 |

4/4 179

-6
fe> 0

t

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6
S @—® o -
f1 < C1 fo>0 fs< c3 fa<ca fs>0
L)
3/8 3/.
5 3
2
5/6 5/8
S N 5/5 o
2
2
4/4 779

-6
fe> 0

t

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6
S @¢—® ® >@
f1 < Cq fo>0 fs< c3 fa< Cy f5>0
|
38 .~/ 3/
W2 3
2 \
5/6 5/8
S N O/ 5/5 : ﬁ
2 pr
4/4 - 4/9

-6
fe> 0

t

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6
S ¢—@ ® >@
f1 < C1 fo>0 fa< c3 fa<cy f5>0
p
5/8 .~ / 3/
P 2K2 S
"5/6 3/8
3 (o 5/5 A ﬁ
3 o |
) P
4/4 § 579

-6
fe> 0

t

Ford Fulkerson

- Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6
S @—® o -
f1 < C1 fo>0 fs< c3 fa<ca fs>0
L)
5/8 3/.
2N2 3
2
5/6 3/8
S N 5/5 o
2N 2
2
4/4 59

-6
fe> 0

t

Analysis of Ford-Fulkerson

- Integral capacities implies theres is a maximum flow where all flow values f(e)
are integers.

* Number of iterations:
- Always increment flow by at least 1: #iterations < max flow value f*
- Time for one iteration:
 Can find augmenting path in linear time: One iteration takes O(m) time.

» Total running time = O(|f*| m).

Residual networks

Residual networks

Residual networks

Residual networks

Residual networks

Residual networks

Residual networks

Implementation

adj[0...n-1] # adjacency list
cap # capacity dictionary

for each edge (u,v,c):

adj[u].append(v) # add v to u’s adjacency list (adding the edge u -> v)

adj[v].append(u) # add u to v’s adjacency list (adding the edge v -> 1)

cap[(u,v)]=¢c # set capacity on u->v edge to c.

cap[(v,u)]=0 # set capacity on u->v edge to O.
Graph search algorithm that searches for an augmenting path from u->v (e.g. BFS or DFS)
AugPath():

visited[O...n-1] # visited list initialized to False

pred[O...n-1] # predecessor list

stack S # initialize stack S

push(S,s) and set visited[s] = True
while S not empty and not visited[t]:
u = pop(S)
for v in adj[u]:
if visited[v] or cap[(u,v)] =O:
continue
visited[v] = True
pred[v]=u
push(S,v)
if visited[t]: # found augmenting path
follow pred pointers back from t to s to find delta (fill out details yourself)
follow pred pointers back from t to s to update capacities (fill out details yourself)
return delta
return O # no augmenting path found

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthats e Sandt e T.
T

S :
e —

oy
-

- Capacity of cut: total capacity of edges going from S to T.

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthats e Sandt e T.
T

S :
e —

oy
-

- Capacity of cut: total capacity of edges going from S to T.

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthats e Sandt e T.
T

S :
e —

oy
-

- Capacity of cut: total capacity of edges going from S to T.

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthats e Sandt e T.
T

S :
e —

oy
-

- Capacity of cut: total capacity of edges going from S to T.

c(S,T) =8

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthats e Sandt e T.
S T

* Flow across cut: = flow from S to T minus flow from T to S.

1/2

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthats e Sandt e T.
S T

* Flow across cut: = flow from S to T minus flow from T to S.

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthats e Sandt e T.
S T

* Flow across cut: = flow from S to T minus flow from T to S.

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthats e Sandt e T.
S T

* Flow across cut: = flow from S to T minus flow from T to S.

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthats e Sandt e T.
S T

* Flow across cut: = flow from S to T minus flow from T to S.

1/2

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthats e Sandt e T.
S T

* Flow across cut: = flow from S to T minus flow from T to S.

1/2

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthats e Sandt e T.
S T

* Flow across cut: = flow from S to T minus flow from T to S.

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthats e Sandt e T.
S T

* Flow across cut: = flow from S to T minus flow from T to S.

s-t Cuts

« Cut: Partition of verticesinto Sand T, suchthatse Sand t e T.
S T

* Flow across cut = flow from S to T minus flow from T to S.

s-t Cuts

« Cut: Partition of verticesinto Sand T, suchthatse Sand t e T.
S T

* Flow across cut = flow from S to T minus flow from T to S.

* Flow across cut: f4+ fs-fg = ?

s-t Cuts

« Cut: Partition of verticesinto Sand T, suchthatse Sand t e T.
S T

* Flow across cut = flow from S to T minus flow from T to S.
* Flow across cut: f4+ fs - fg = ?

c f4+fs-f1-f2=0

« fo-fe-f3 =0

« f1+f3 = |f|

o (fa+fs-f1-1) + (f2- fe - f3) + (f1 + f3) = [f]

s-t Cuts

« Cut: Partition of verticesinto Sand T, suchthatse Sand t e T.
S T

* Flow across cut = flow from S to T minus flow from T to S.
 Flow across cut: f4+ f5- fe = ?

c f4+fs5-f1-f2=0

« fo-fe-f3 =0

« f1+ f3 =|f|

* (fa+ f5- %1 - o) + (Fo - e - fg) + (B + B6) = [f|

s-t Cuts

« Cut: Partition of verticesinto Sand T, suchthatse Sand t e T.
S T

* Flow across cut = flow from S to T minus flow from T to S.
 Flow across cut: f4+ f5- fe = ?
c f4+fs5-f1-f2=0
* fa-fe-f3 =0
« f1+ f3 =|f|
o (fa+ fs- f1 - fo) + (fo - fo -) + (Bt + F6) = |fl
« f4+ f5- fe = |f|

s-t Cuts

Cut: Partition of vertices into Sand T, suchthatse Sandte T.
S T

Flow across cut = flow from S to T minus flow from T to S.

Flow across cut: f4 + fs - fg = ?
c f4+fs-f1-fo=0
« fo-fe-f3 =0
« f1+f3 = |f|
o (fa+ fs- f1 - fo) + (fo - fo -) + (Bt + F6) = |fl
* fa+ f5- fo = |f|

Flow across cut is |f| for all cuts => flow out of s = flow into t.

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthats e Sandt e T.
S T

* Flow across cut is |f| for all cuts => flow out of s = flow into t.
fl < c(S,T):

fl=fa+fs-foe<fa+fs <ca+ cs=c(S,T)

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthats e Sandt e T.
S T

+ Suppose we have found flow f and cut (S,T) such that [f| = ¢(S,T). Then fis a
maximum flow and (S,T) is a minimum cut.

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthats e Sandt e T.
S T

+ Suppose we have found flow f and cut (S,T) such that [f| = ¢(S,T). Then fis a
maximum flow and (S,T) is a minimum cut.

* Let f* be the maximum flow and the (S*,T*) minimum cut:
o |f| < [f*] < c(S*,T%) <c(S,T).
« Since |f| = ¢(S,T) this implies [f| = |f*| and ¢(S,T) = ¢(S*,T%).

FiInding minimum cuts

« Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
« When no augmenting s-t path:

- Let S be all vertices to which there exists an augmenting path from s.

FiInding minimum cuts

« Use Ford-Fulkerson to find a max-flow (finding augmenting paths).

« When no augmenting s-t path:
- Let S be all vertices to which there exists an augmenting path from s.
- value of flow (S,T) = capacity of the cut:

- All forward edges in the minimum cut are “full” (flow = capacity).

FiInding minimum cuts

« Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
« When no augmenting s-t path:
- Let S be all vertices to which there exists an augmenting path from s.
- value of flow (S,T) = capacity of the cut:
- All forward edges in the minimum cut are “full” (flow = capacity).

- All edges in minimum cut have 0 flow.

Finding minimum cuts (with residual network).

Use Ford-Fulkerson to find a max-flow (finding augmenting paths).

When no augmenting s-t path:

Let S be all vertices to which there exists an augmenting path from s.
value of flow (S,T) = capacity of the cut:
All forward edges in the minimum cut are “full” (flow = capacity).

All backwards edges in minimum cut have 0 flow.

Use of Max-flow min-cut theorem

« There is no augmenting path <=> f is a maximum flow.
« f maximum flow => no augmenting path:
- Show that exists augmenting path => f not maximum flow.
* no augmenting path => f maximum flow
 no augmenting path => exists cut (S,T) where |f| = ¢(S,T):
 Let S be all vertices to which there exists an augmenting path from s.
« t not in S (since there is no augmenting s-t path).
- Edges from Sto T: f1 = ¢4 and f2 = co.
- Edges from T to S: f3 = 0.
« =>|fl=f1 +fo-fa=f1 + fo=c1+ c2 = c(S,T).
- =>f a maximum flow and (S,T) a minimum cut.

f1

>

Removing assumptions

- Edges into s and out of t:

v(f) = f(s) = f"(s)

- Capacities not integers.

Network Flow

- Multiple sources and sinks:

