Applications

+ Matchings

+ Job scheduling

» Image segmentation

+ Baseball elimination

» Disjoint paths

+ Survivable network design

Network Flows

Inge Li Gortz
Network Flow Network Flow
» Truck company: Wants to send as many trucks as poicssible from s to t. Limit * Truck company: Wants to send as many trucks as po$sible from s to t. Limit

of number of trucks on each road. of number of trucks on each road.

» Example 1:

« Solution 1: 4 trucks

Network Flow

» Truck company: Wants to send as many trucks as possible from s to t. Limit
of number of trucks on each road. 11

+ Example 1:
« Solution 1: 4 trucks

 Solution 2: 5 trucks

Network Flow

+ Truck company: Wants to send as many trucks as possible from s to t. Limit
of number of trucks on each road. 1

+ Example 1:
 Solution 1: 4 trucks

« Solution 2: 5 trucks

+ Example 2:

+ 5 trucks (need to cross river).

Network Flow

» Truck company: Wants to send as many trucks as possible from s to t. Limit
of number of trucks on each road. 11

+ Example 1:
« Solution 1: 4 trucks

« Solution 2: 5 trucks

+ Example 2:

Network Flow

* Network flow:
« graph G=(V,E).
« Special vertices s (source) and t (sink).
+ s has no edges in and t has no edges out.

« Every edge (e) has a (integer) capacity c(e) > 0.

* Flow:
+ capacity constraint: every edge e has a flow 0 < f(e) < c(e).
» flow conservation: for all u # s, t: flow into u equals flow out of u.

Z f(mu) = Z f(u7 U)

v:(v,u)EE v:(u,v)€EE

+ Value of flow f is the sum of flows out of s:

v(f)= Y, fley=rf""s

vi(s,V)EE

* Maximum flow problem: find s-t flow of maximum value

Algorithm Algorithm

+ Find path where we can send more flow. + Find path where we can send more flow.

Algorithm Algorithm

+ Find path where we can send more flow. + Find path where we can send more flow.

+ Send flow back (cancel flow).

Algorithm

+ Find path where we can send more flow.

» Send flow back (cancel flow).

Augmenting Paths

* Augmenting path: s-t path P where
« forward edges have leftover capacity
+ backwards edges have positive flow

+6 -6 +6 +6 -6

{] @
f1< cq fo>0 fs< cs fa< ca fs>0

+ Can add extra flow: min(c+ - f1, f2, c3- 3, Ca- 4, f5, f5) = & = bottleneck(P).

1

-6
fe>0

ot

Algorithm

 Find path where we can send more flow.

» Send flow back (cancel flow).

Augmenting Paths

» Augmenting path: s-t path P where
« forward edges have leftover capacity
+ backwards edges have positive flow

+6 -6 +6 +6

{ o—>
fi<ct fa>0 fs< c3 fa<ca

+ Can add extra flow: min(c+ - f1, f2, c3 - f3, C4 - f4, f5, f5) = & = bottleneck(P).

-8
fs>0

-6
fe>0

ot

Augmenting Paths

» Augmenting path: s-t path P where
+ forward edges have leftover capacity
+ backwards edges have positive flow

+5 -6 +6 +5 -6

{] *——>0—0
f1< Cq fo>0 fa<cs fa< cy f5>0

+ Can add extra flow: min(c+ - f1, fo, c3- f3, c4 - 4, fs, f6) = & = bottleneck(P).

Augmenting Paths

* Augmenting path: s-t path P where
« forward edges have leftover capacity
+ backwards edges have positive flow

+6 -6 +6 +6 -6

{] @
f1< cq fo>0 fs< cs fa< ca fs>0

+ Can add extra flow: min(c+ - f1, f2, c3- 3, Ca- 4, f5, f5) = & = bottleneck(P).

® ot
fe>0

® ot
fe>0

Augmenting Paths

» Augmenting path: s-t path P where
+ forward edges have leftover capacity
+ backwards edges have positive flow

+6 -6 +6 +6 -6

@ *——>0—0
fi<cq fo>0 fa<cs fa< Cy f5>0

® ot
fo>0

+ Can add extra flow: min(c+ - f1, f2, c3- f3, c4 - 4, s, fe) = & = bottleneck(P).

Augmenting Paths

» Augmenting path: s-t path P where
« forward edges have leftover capacity
+ backwards edges have positive flow

+6 -6 +6 +6 -6

{ o—>
fi<ct fa>0 fs< c3 fa<ca fs>0

® ot
fe>0

+ Can add extra flow: min(c+ - f1, f2, c3 - f3, C4 - f4, f5, f5) = & = bottleneck(P).

Augmenting Paths

» Augmenting path: s-t path P where
+ forward edges have leftover capacity
+ backwards edges have positive flow

+5 -6 +6 +5 -6

{] *——>0—0
f1< Cq fa>0 fa<cs fa<cs f5>0

+ Can add extra flow: min(c+ - f1, fo, c3- f3, c4 - 4, fs, f6) = & = bottleneck(P).

Augmenting Paths

* Augmenting path: s-t path P where
« forward edges have leftover capacity
+ backwards edges have positive flow

+6 -6 +6 +6 -6

{] @
f1< cq fo>0 fs< cs fa< ca fs>0

+ Can add extra flow: min(c+ - f1, f2, c3- 3, Ca- 4, f5, f5) = & = bottleneck(P).

® ot
fe>0

® ot
fe>0

Augmenting Paths

» Augmenting path: s-t path P where
+ forward edges have leftover capacity
+ backwards edges have positive flow

+6 -6 +6 +6 -6

@ *——>0—0
fi<cq fo>0 fa<cs fa< Cy f5>0

® ot
fo>0

+ Can add extra flow: min(c+ - f1, f2, c3- f3, c4 - 4, s, fe) = & = bottleneck(P).

Augmenting Paths

» Augmenting path: s-t path P where
« forward edges have leftover capacity
+ backwards edges have positive flow

+6 -6 +6 +6 -6

{ o—>
fi<ct fa>0 fs< c3 fa<ca fs>0

® ot
fe>0

+ Can add extra flow: min(c+ - f1, f2, c3 - f3, C4 - f4, f5, f5) = & = bottleneck(P).

Augmenting Paths

» Augmenting path: s-t path P where
+ forward edges have leftover capacity
+ backwards edges have positive flow

+6 -6 +6 +6 -6 -6

{] *—0—0 @
f1< Cq fa>0 fa<cs fa<cs f5>0 fe>0

+ Can add extra flow: min(c+ - f1, fo, c3- f3, c4 - 4, fs, f6) = & = bottleneck(P).

Augmenting Paths

» Augmenting path (definition different than in CLRS): s-t path where
+ forward edges have leftover capacity

+ backwards edges have positive flow

+6 -6 +8 +6 -6 -6
S o—e @o——0—0 @ @ t
f1< cq fo>0 fs< cs fa< ca fs>0 fe>0

+ Can add extra flow: min(c1 - f1, f2, c3 - fs, ca - f4, fs, f6) = & = bottleneck(P).

* Ford-Fulkerson:
+ Find augmenting path, use it
» Find augmenting path, use it

+ Find augmenting path, use it

Augmenting Paths

» Augmenting path: s-t path P where
+ forward edges have leftover capacity
+ backwards edges have positive flow
+5 -5 +6 +5 -5 -5

{ *—0—0 @
fi<cq fo>0 fa<cs fa< Cy f5>0 fo>0

+ Can add extra flow: min(c+ - f1, f2, c3- f3, c4 - 4, s, fe) = & = bottleneck(P).

Ford Fulkerson

» Augmenting path: s-t path P where
« forward edges have leftover capacity

+ backwards edges have positive flow

s +6 ° -6 ‘;6> +6 -8 ° -6 ;
fi<ct fa>0 fs< c3 fa<ca fs>0 fe> 0

Ford Fulkerson

» Augmenting path: s-t path P where
+ forward edges have leftover capacity

+ backwards edges have positive flow

+6 -6 +6 +6

{]
fi<cq fo>0 fa< cs fa<ca

-6

@
f5>0

Ford Fulkerson

* Augmenting path: s-t path P where
« forward edges have leftover capacity

+ backwards edges have positive flow

+6 -6 +6 +6

{]
f1< cq fo>0 fs< cs fa< ca

-6
fs>0

-6
fe>0

-6
fe>0

ot

ot

Ford Fulkerson

» Augmenting path: s-t path P where
+ forward edges have leftover capacity

+ backwards edges have positive flow

+6 -6 +6 +6

{
fi<cq fo>0 fa<cs fa< Cy

-6

@
f5>0

Ford Fulkerson

» Augmenting path: s-t path P where
« forward edges have leftover capacity

+ backwards edges have positive flow

+6 -6 +6 +6

{ o—>
fi<ct fa>0 fs< c3 fa<ca

-6
fs>0

-8
fo>0

-6
fe>0

ot

ot

Ford Fulkerson Ford Fulkerson

» Augmenting path: s-t path P where » Augmenting path: s-t path P where
+ forward edges have leftover capacity + forward edges have leftover capacity
+ backwards edges have positive flow + backwards edges have positive flow
+6 -6 +6 +6 -6 -6 +6 -6 +6 +6 -6 -6
S ¢— @0+ 0—O0—0+—— @0+—— @ t S ¢—— o 06— O0—0 @0+ @ t
f1< Cq fo>0 fa<cs fa< cy f5>0 fe>0 fi<cq fo>0 fa<cs fa< Cy f5>0 fo>0

Ford Fulkerson Ford Fulkerson
* Augmenting path: s-t path P where » Augmenting path: s-t path P where
« forward edges have leftover capacity « forward edges have leftover capacity
+ backwards edges have positive flow + backwards edges have positive flow
s e 0.0 .0 o L g s 0 re 0.0 .0 o L o

f1< cq fo>0 fs< cs fa< ca fs>0 fe>0 fi<ct f2>0 fa<cs fa<ca fs>0 fe> 0

Ford Fulkerson Analysis of Ford-Fulkerson

» Augmenting path: s-t path P where + Integral capacities implies theres is a maximum flow where all flow values f(€)

) are integers.
+ forward edges have leftover capacity

* backwards edges have positive flow - Number of iterations:
+6 -5 +6 +5 -5 -5
*—0—0 . - . »
f1 < C 4 f2>0 fa< Cs fa< Ca f5>0 i fo>0 ® + Always increment flow by at least 1: #iterations < max flow value f

» Time for one iteration:

+ Can find augmenting path in linear time: One iteration takes O(m) time.

Total running time = O(|f*| m).

Residual networks Residual networks

Residual networks Residual networks

Residual networks Residual networks

Residual networks

s-t Cuts

Implementation

adj[0...n-1] # adjacency list
cap # capacity dictionary
for each edge (u,v,c):
adj[u].append(v) # add v to u’s adjacency list (adding the edge u -> v)
adj[v].append(u) # add u to v’s adjacency list (adding the edge v ->u)
cap[(u,v)] =c # set capacity on u->v edge to c.
cap[(v,u)]=0 # set capacity on u->v edge to O.
Graph search algorithm that searches for an augmenting path from u->v (e.g. BFS or DFS)
AugPath():
visited[O...n-1] # visited list initialized to False
pred[0...n-1] # predecessor list
stack S # initialize stack S

push(8S,s) and set visited[s] = True
while S not empty and not visited[t]:

u =pop(S)
for vin adj[u]:
if visited[v] or cap[(u,v)] = O:
continue
visited[v] = True
pred[v]=u
push(S,v)
if visited[t]: # found augmenting path
follow pred pointers back from t to s to find delta (fill out details yourself)
follow pred pointers back from t to s to update capacities (fill out details yourself)
return delta
return O # no augmenting path found

« Cut: Partition of vertices into Sand T, suchthatse Sandte T.
S T

S

+ Capacity of cut: total capacity of edges going from Sto T.

s-t Cuts

» Cut: Partition of vertices into Sand T, suchthatse Sandte T.
S T

S

+ Capacity of cut: total capacity of edges going from Sto T.

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthatse Sandte T.

s . 7T
O ——
» &
N

+ Capacity of cut: total capacity of edges going from Sto T.

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthatse Sandte T.

—

* Flow across cut: = flow from S to T minus flow from T to S.

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthatse Sandte T.

s . 7T
O ——

&
N

+ Capacity of cut: total capacity of edges going from Sto T.

s-t Cuts

» Cut: Partition of vertices into Sand T, suchthatse Sandte T.

—

* Flow across cut: = flow from S to T minus flow from T to S.

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthatse Sandte T.

—

* Flow across cut: = flow from S to T minus flow from T to S.

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthatse Sandte T.

—

* Flow across cut: = flow from S to T minus flow from T to S.

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthatse Sandte T.

—

» Flow across cut: = flow from S to T minus flow from T to S.

s-t Cuts

» Cut: Partition of vertices into Sand T, suchthatse Sandte T.

—

* Flow across cut: = flow from S to T minus flow from T to S.

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthatse Sandte T.
S T

* Flow across cut: = flow from S to T minus flow from T to S.

s-t Cuts

+ Cut: Partition of vertices into Sand T, such thatse Sandte T.
S T

» Flow across cut = flow from S to T minus flow from T to S.

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthatse Sandte T.
S T

» Flow across cut: = flow from S to T minus flow from T to S.

oST=5 fST=5

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthat se Sandt e T.
S T

» Flow across cut = flow from S to T minus flow from T to S.

» Flow across cut: f4+ fs - fo = ?

s-t Cuts

« Cut: Partition of vertices into Sand T, such thatse Sandte T.
S T

+ Flow across cut = flow from S to T minus flow from T to S.
+ Flow across cut: fa+ fs-fe = ?

e fa+fs-fi-f2=0

o fo-fo-f3=0

o fi+fz =|f|

o (fa+ fs- f1-f2) + (f2- fo - fa) + (f1 + fa) = [f|

s-t Cuts

+ Cut: Partition of vertices into Sand T, such thatse Sandte T.
S T

* Flow across cut = flow from S to T minus flow from T to S.
+ Flow across cut: fa+ fs- fo = ?
e fa+fs-f1-f2=0
+ fo-fe-f3=0
o f1+fa = |f|
o (fa+fs-f1 - fo) + (fo- fo - fa) + (B + f6) = |f|
o f4+ fs- fo = |f|

s-t Cuts

« Cut: Partition of vertices into Sand T, such thatse Sandte T.
S T

+ Flow across cut = flow from S to T minus flow from T to S.
+ Flow across cut: fa+ fs-fe = ?

e fa+fs-f1-f2=0

e fa-fo-f3=0

« fi+f3 =|f|

o (fa+fs-f1 - fo) + (o - fo -) + (B + Fe) = [f]

s-t Cuts

« Cut: Partition of vertices into Sand T, such thatse Sandte T.
S T

* Flow across cut = flow from S to T minus flow from T to S.
+ Flow across cut: fa+ fs- fo = ?
e fa+fs-f1-f2=0
e fo-fe-f3=0
« fi+fa =|f|
* (fa+ fs- 1 - fo) + (Fo - fo - fe) + (B¢ + o) = |f|
s fa+f5- fo = |f|

- Flow across cut is |[f| for all cuts => flow out of s = flow into t.

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthatse Sandte T.
S T

+ Flow across cut is [f| for all cuts => flow out of s = flow into t.
« |fl = c(S,T):

s fl=fa+fs-fo<fa+fs <ca+cs=c(S,T)

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthatse Sandte T.
S T

+ Suppose we have found flow f and cut (S,T) such that |f| = ¢(S,T). Then fis a
maximum flow and (S,T) is a minimum cut.

* Let f* be the maximum flow and the (S*,T*) minimum cut:
« |fl = [f*] = ¢(8*,T*) < c(S,T).
« Since [f| = ¢(S,T) this implies |f| = |f*| and ¢(S,T) = c(S*,T%).

s-t Cuts

« Cut: Partition of vertices into Sand T, suchthatse Sandte T.
S T

+ Suppose we have found flow f and cut (S,T) such that |f| = ¢(S,T). Then fis a
maximum flow and (S,T) is a minimum cut.

Finding minimum cuts

+ Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
* When no augmenting s-t path:

+ Let S be all vertices to which there exists an augmenting path from s.

Finding minimum cuts Finding minimum cuts

+ Use Ford-Fulkerson to find a max-flow (finding augmenting paths). + Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
* When no augmenting s-t path: » When no augmenting s-t path:
+ Let S be all vertices to which there exists an augmenting path from s. + Let S be all vertices to which there exists an augmenting path from s.
» value of flow (S,T) = capacity of the cut: « value of flow (S,T) = capacity of the cut:
« All forward edges in the minimum cut are “full” (flow = capacity). + All forward edges in the minimum cut are “full” (flow = capacity).

+ All backwards edges in minimum cut have 0 flow.

Finding minimum cuts (with residual network). Use of Max-flow min-cut theorem

+ Use Ford-Fulkerson to find a max-flow (finding augmenting paths). . There iS no augmenting path <=> f iS a maximum ﬂOW

+ When no augmenting s-t path:

« f maximum flow => no augmenting path:

+ Let S be all vertices to which there exists an augmenting path from s.

+ value of flow (S,T) = capacity of the cut: » Show that exists augmenting path => f not maximum flow.

* no augmenting path => f maximum flow

+ Al forward edges in the minimum cut are “full” (flow = capacity).
+ Allbackuards edges in minimum out have 0 flow * no augmenting path => exists cut (S,T) where |f| = ¢(S,T):
« Let S be all vertices to which there exists an augmenting path from s.
» tnot in S (since there is no augmenting s-t path).
+ Edges from Sto T: f1 = ¢1 and f2 = c2.
+ Edges fromTto S: f3 = 0.
c=>fl=fi+fa-fa=fi+fo=ci1+c2=c(S,T).

+ => f a maximum flow and (S,T) a minimum cut.

f1
S fa ?\ t

fa

Removing assumptions Network Flow

» Edges into s and out of t: » Multiple sources and sinks:

v(f) = f(s) = f7(s)

+ Capacities not integers.

