02110

Inge Li Gortz

Contents

+ Divide-and-conquer
» Dynamic programming
+ Maximum flow in networks

» Matchings and assignment problems)

« Data structures: ‘ BNENE
+ Hash tables
» Fenwick trees and dynamic arrays
» Amortised data structures

+ String matching

» Randomized algorithms

» NP-completeness

Divide-and-Conquer

« Algorithms: counting inversions

« Analysis:

» Recursion trees.

+ Substitution method

MERGE SORT

7 bt 1 —) ;
ﬁ@ i

Dynamic Programming

+ Greedy. Build solution incrementally, optimizing some local criterion.

+ Divide-and-conquer. Break up problem into independent subproblems,
solve each subproblem, and combine to get solution to original
problem.

+ Dynamic programming. Break up problem into overlapping
subproblems, and build up solutions to larger and larger subproblems.

« Can be used when the problem have “optimal substructure”:

+ Solution can be constructed from optimal solutions to
subproblems

+ Use dynamic programming when subproblems overlap.

Weighted interval scheduling

« Weighted interval scheduling problem
* n jobs (intervals)

Job i starts at sj, finishes at f; and has weight/value vi.

j1 vi=2

J2 Vo=

J3 vg=1

Ja va=9 |

js Vs=7 ‘

J6 Ve=5

j7 v7=6

Js ve=4

Goal: Find maximum weight subset of non-overlapping (compatible) jobs.

Weighted interval scheduling

» OPT(j) = value of optimal solution to the problem consisting job requests 1,2,..,j.

+ Case 1. OPT()) selects job j
OPT(j) = v; + optimal solution to subproblem on 1,...,0()
» Case 2. OPT(j) does not select job j

OPT = optimal solution to subproblem 1,...j-1
» Recurrence:

oprin 40 if j=0
)= max{v; + OPT(p(j)), OPT(j— 1)} otherwise

Subset Sum

+ Subset Sum
+ Givennitems {1,...,n}
« Item i has weight w;
- Bound W

+ Goal: Select maximum weight subset S of items so that

ZwiSW

i€s
« Example

*{2,5,8,9,12,18}and W = 25.

« Solution: 5 + 8 + 12 = 25. I I I
2 5 8 9 12 18

=

Subset Sum

+ Subset Sum
« Givennitems {1,...,n}
+ Item i has weight w;
- Bound W

+ Goal: Select maximum weight subset S of items so that

Zw,-SW

i€s
« Example
+{2,5,8,9,12,18} and W = 25.

+ Solution: 5 + 8 + 12 = 25.

Subset Sum

+ O = optimal solution
- Consider element n.
- Either in O or not.

« n & O : Optimal solution using items {1,...,n — 1} is equal to 0.

« n € O: Value of O = w, + weight of optimal solution on {1,...,n — 1} with
capacity W —w,,.

» Recurrence

OPT(— 1,w) if w<w;

PTG, w) =
OPT.w) {max(OPT(i— 1w),w; + OPT(i — 1w —w,)) otherwise

Subset Sum
» Recurrence:
OPT(G, W) = OPT(i — 1,w) ifw<w;
LW = max(OPT(i — 1,w),w; + OPT(i — 1,w —w;)) otherwise
« Example

+{1,2,5,8,9tand W = 12

A O e e e e e T I T I O

- 0J0|jO|JO|JOJOJO|OfOfOfOfOfOfO

01 2 3 4 5 6 7 8 9 10 11 12

Knapsack

+ O = optimal solution

« Consider element n.

@ swsus

» n & O : Optimal solution using items {1,...,n — 1} is equal to O.

« Either in O or not.

« n € O: Value of O = v, + value on optimal solution on {1,...,n — 1} with
capacity W — w,,.

* Recurrence
+ OPT(i, w) = optimal solution on {1,..., i} with capacity w.
. OPT(i — 1,w) if w<w;
OPT(i,w) = . .)
max(OPT(i — 1,w), v; + OPT(i — I,w — w;)) otherwise

+ Running time O(nW)

Sequence alignment

+ How similar are ACAAGTC and CATGT.
+ Align them such that
+ all items occurs in at most one pair.
* no crossing pairs.
+ Cost of alignment
+ gap penalty 6
» mismatch cost for each pair of letters a(p,q).
+ Goal: find minimum cost alignment.
+ Input to problem: 2 strings A nd Y, gap penalty §, and penalty matrix a(p,q).

ACAAGTC ACAA-GTC
-CATGT - -CA-TGT-

1 mismatch, 2 gaps @ mismatches, 4 gaps

Sequence alignment

o ifi=0

i6 ifj=0
SA(XNY'J) = O‘(xhyj)"rSA(Xi—lanfl%

min ¢ § + SA(X;,Y;_1), otherwise

0+ SA(X-1,Yj)}

AlclalalglTlc Penalty matrix

A|C|G|T

c 51 Alof1]2]2

S cl|1]|]0(|2](3
T SA(Xs, Y3)

G Depends on ? Gl2|2]0]1

T T|([2|3 0

Dynamic programming

« First formulate the problem recursively.
» Describe the problem recursively in a clear and precise way.
+ Give a recursive formula for the problem.

* Bottom-up
+ Identify all the subproblems.
+ Choose a memoization data structure.
+ Identify dependencies.
+ Find a good evaluation order.

» Top-down
+ Identify all the subproblems.
+ Choose a memoization data structure.
+ Identify base cases.
* Remember to save results and check before computing.

Network Flow

* Network flow:
+ graph G=(V,E).
« Special vertices s (source) and t (sink).
« Every edge (u,v) has a capacity c(u,v) = 0.

* Flow:

+ capacity constraint: every edge e has a flow 0 < f(u,v) < c(u,v).

+ flow conservation: for all u # s, t: flow into u equals flow out of u.

> ojww= Y fww) ;@é.

vi(v,u)EE vi(u,v)EE
+ Value of flow f is the sum of flows out of s minus sum of flows into s:
=Y fsv)= D flvs)
vi(s,w)EE v:(v,s)EE

* Maximum flow problem: find s-t flow of maximum value

s-t Cuts

» Cut: Partition of vertices into Sand T, suchthatse SandteT.

S T

» Example

fromStoT

fromTto S

Network flow: s-t Cuts

 Cut: Partition of vertices into Sand T, suchthatse Sandte T.
S T

« Capacity of cut: total capacity of edges going from S to T.
* Flow across cut: flow from S to T minus flow from T to S.
+ Value of flow any flow [f| < ¢(S,T) for any s-t cut (S,T).

+ Suppose we have found flow f and cut (S,T) such that |f| = ¢(S,T). Then fis a
maximum flow and (S, T) is a minimum cut.

Augmenting paths

* Augmenting path: s-t path where
« forward edges have leftover capacity
« backwards edges have positive flow

+6 -6 +6 +6 -6 -6
S &—0«—0—0——0+———— @+ 0@ t
fi<cy f>0 fa<cs fa<ca fs>0 fe>0

+ There is no augmenting path <=> f is a maximum flow.

+ Ford-Fulkerson algorithm:
» Repeatedly find augmenting path, use it, until no augmenting path exists
+ Running time: O(/f*| m).

+ Edmonds-Karp algorithm:
» Repeatedly find shortest augmenting path, use it, until no augmenting path exists
+ Use BFS to find a shortest augmenting path.
* Running time: O(nm?)

+ Find minimum cut. All vertices to which there is an augmenting path from s goes into S, rest
into T.

Augmenting paths

* Augmenting path: s-t path where
+ forward edges have leftover capacity
+ backwards edges have positive flow

+6 - +6 +6 6 -6
S &——0+——0——0——0+———0+— @ t
fi<cy f2>0 fa<cs fa<cs fs>0 fe>0

+ There is no augmenting path <=> f is a maximum flow.

+ Scaling algorithm:
+ Set A = highest power of two that is no larger than the largest capacity out of s.
« UntilA < 1
+ Repeatedly find augmenting path in G,, use it, until no augmenting path exists.
« SetA=A/2
* Running time: O(m2log C).

Network flow

» Can model and solve many problems via maximum flow.
» Maximum bipartite matching
» k edge-disjoint paths
+ capacities on vertices
+ Many sources/sinks

+ assignment problems: Example. X doctors, Y holidays, each doctor should work
at at most ¢ holidays, each doctor is available at some of the holidays.

Scheduling of doctors

« X doctors, Y holidays, each doctor should work at at most ¢ holidays, each
doctor is available at some of the holidays.

e Each doctor should work at most one day in each vacation period.

Partial sums

ENENENEE0DNB0NONR

0,1 2 3 4 5 6 7 8 9 10 m 12 13 1 15 16
Sum(14)?

ONONCECEOEoNoNS _ Y = Y =
[TiTel+T+Jol2s[1Jo]vJaTals a]1]2] [C]a]s]1]s5]ol2]a]m]o] 1 a]e]1]2]1]2)
O 1 2 3 4 5 6 7 8 9 0 1o w oW B
UPDATE(14, 2)

Dynamic array:

« 2-level rotated array

of+fafaff-Ja]x]

[1]1]2]1]]2]3][1]o0

[1fef+]1]of2]sfsJofs]afafa]s]n]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Amortized analysis

+ Amortized analysis.

« Time required to perform a sequence of data operations is averaged over all the operations
performed.

+ Example: dynamic tables with doubling and halving
- If the table is full copy the elements to a new array of double size.
« If the table is a quarter full copy the elements to a new array of half the size.
« Worst case time for insertion or deletion: O(n)
» Amortized time for insertion and deletion: O(1)
« Any sequence of n insertions and deletions takes time O(n).
* Methods.
« Aggregate method

« Accounting method

« Potential method

Randomized algorithms

« Contention resolution KVICK SORT
* Minimum cut

5
+ Coupon Collector. ﬁ Adlaplls. Ll —_ ii%

« Quicksort

+ Selection ﬁ QQD R/

» Hashing /’ A4
& N ~

A= M [N —— —
s‘.., e

Hash tables and hash functions

Theorem. We can solve the dictionary problem (without special assumptions) in:
O(n) space.
O(1) expected time per operation (lookup, insert, delete).
Hash function. Given a prime p and a = (a1az...ar)p , define
h((xy%5...x,),) = aix; + apx; + ... + a,x, mod p

Then H = {h,|(aa;...q,), € {0,...,p — 1}"} is a universal family of hash

functions. _
f
T
U ks
(univer; eys)
L]
Wk — [l]
K ks
(actual ks
YS) ke
——ll]

String Matching

« String matching problem:
- string T (text) and string P (pattern) over an alphabet 2. [T| = n, |P| = m.

» Report all starting positions of occurrences of P in T.
* Knuth-Morris-Pratt (KMP). Running time: O(m + n)

- String matching automaton. Running time: O(n + m|Z|)

Finite Automaton

Knuth-Morris-Pratt (KMP)

+ Matched P[1...q]: Find longest block P[1..k] that matches end of P[2..q].

| |aaaba| |

|aaaba|ba|

|a|aababa|

« Find longest prefix P[1...k] of P that is a proper suffix of P[1...q]
* Array ni[1...m]:
» n1[q] = max k < q such that P[1...k] is a suffix of P[1...q].

« Can be seen as finite automaton with failure links:

mil |o|o|1|2]|3]|0]1

P and NP

» P solvable in deterministic polynomial time.

* NP solvable in non-deterministic (with guessing) polynomial time. Only the time for
the right guess is counted.

+ PcNP (every problem T which is in P is also in NP).

« It is not known (but strongly believed) whether the inclusion is proper, that is whether
there is a problem in NP which is not in P.

+ There is subclass of NP which contains the hardest problems, NP-complete
problems.

» Reductions.

Courses

