02110

Inge Li Gørtz

Divide-and-Conquer

- · Algorithms: counting inversions
- · Analysis:
 - · Recursion trees.
 - · Substitution method

MERGE SÖRT

Contents

- · Divide-and-conquer
- Dynamic programming
- · Maximum flow in networks
- · Matchings and assignment problems
- · Data structures:
 - · Hash tables
 - · Fenwick trees and dynamic arrays
 - · Amortised data structures
- · String matching
- · Randomized algorithms
- NP-completeness

Dynamic Programming

- Greedy. Build solution incrementally, optimizing some local criterion.
- Divide-and-conquer. Break up problem into independent subproblems, solve each subproblem, and combine to get solution to original problem.
- Dynamic programming. Break up problem into overlapping subproblems, and build up solutions to larger and larger subproblems.
 - Can be used when the problem have "optimal substructure":
 - + Solution can be constructed from optimal solutions to subproblems
 - + Use dynamic programming when subproblems overlap.

4

Weighted interval scheduling

- · Weighted interval scheduling problem
 - n jobs (intervals)
 - Job i starts at s_i , finishes at f_i and has weight/value v_i .
 - · Goal: Find maximum weight subset of non-overlapping (compatible) jobs.

Subset Sum

• Subset Sum

• Given n items $\{1,\ldots,n\}$ • Item i has weight w_i • Bound W• Goal: Select maximum weight subset S of items so that $\sum_{i \in S} w_i \leq W$ • Example
• $\{2,5,8,9,12,18\}$ and W=25.
• Solution: 5+8+12=25.

Weighted interval scheduling

- OPT(j) = value of optimal solution to the problem consisting job requests 1,2,...j.
 - Case 1. OPT(j) selects job j

$$OPT(i) = v_i + optimal solution to subproblem on 1,...,p(i)$$

· Case 2. OPT(j) does not select job j

OPT = optimal solution to subproblem 1,...j-1

· Recurrence:

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max\{v_j + OPT(p(j)), OPT(j-1)\} & \text{otherwise} \end{cases}$$

6

Subset Sum

- Subset Sum
 - Given *n* items {1,..., *n*}
 - Item i has weight w_i
 - ullet Bound W
 - Goal: Select maximum weight subset S of items so that

$$\sum_{i \in S} w_i \le W$$

Example

- $\{2, 5, 8, 9, 12, 18\}$ and W = 25.
- Solution: 5 + 8 + 12 = 25.

Subset Sum

- \mathcal{O} = optimal solution
- Consider element n.
 - Either in \mathcal{O} or not.
 - $n \notin \mathcal{O}$: Optimal solution using items $\{1, ..., n-1\}$ is equal to \mathcal{O} .
 - $n \in \mathcal{O}$: Value of $\mathcal{O} = w_n$ + weight of optimal solution on $\{1, \ldots, n-1\}$ with capacity $W-w_n$.
- Recurrence

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

Knapsack

- $n \notin \mathcal{O}$: Optimal solution using items $\{1, ..., n-1\}$ is equal to \mathcal{O} .
- $n\in \mathcal{O}$: Value of $\mathcal{O}=v_n$ + value on optimal solution on $\{1,\ldots,n-1\}$ with capacity $W-w_n$.
- Recurrence
 - OPT(i, w) = optimal solution on $\{1, ..., i\}$ with capacity w.

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,\!w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,\!w), v_i + \mathsf{OPT}(i-1,\!w-w_i)) & \text{otherwise} \end{cases}$$

• Running time O(nW)

Subset Sum

· Recurrence:

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,\!w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,\!w), w_i + \mathsf{OPT}(i-1,\!w-w_i)) & \text{otherwise} \end{cases}$$

Example

• $\{1, 2, 5, 8, 9\}$ and W = 12

Sequence alignment

- · How similar are ACAAGTC and CATGT.
- · Align them such that
 - · all items occurs in at most one pair.
 - · no crossing pairs.
- · Cost of alignment
 - gap penalty δ
 - mismatch cost for each pair of letters α(p,q).
- · Goal: find minimum cost alignment.
- Input to problem: 2 strings A nd Y, gap penalty δ , and penalty matrix $\alpha(p,q)$.

12

Sequence alignment

$$SA(X_i,Y_j) = \begin{cases} j\delta & \text{if } i=0\\ i\delta & \text{if } j=0 \end{cases}$$

$$\min \begin{cases} \alpha(x_i,y_j) + SA(X_{i-1},Y_{j-1}), & \text{otherwise} \\ \delta + SA(X_i,Y_{j-1}), & \text{otherwise} \\ \delta + SA(X_{i-1},Y_j) \end{cases}$$

Penalty matrix

	Α	С	G	Т	
Α	0	1	2	2	
С	1	0	2	3	
G	2	2	0	1	
Т	2	3	1	0	

10

Network Flow

- · Network flow:
 - graph G=(V,E).
 - Special vertices s (source) and t (sink).
 - Every edge (u,v) has a capacity $c(u,v) \ge 0$.
 - · Flow:
 - capacity constraint: every edge e has a flow $0 \le f(u,v) \le c(u,v)$.
 - flow conservation: for all $u \neq s$, t: flow into u equals flow out of u.

$$\sum_{v:(v,u)\in E} f(v,u) = \sum_{v:(u,v)\in E} f(u,v)$$

· Value of flow f is the sum of flows out of s minus sum of flows into s:

$$|f| = \sum_{v:(s,v) \in E} f(s,v) - \sum_{v:(v,s) \in E} f(v,s)$$

Maximum flow problem: find s-t flow of maximum value

Dynamic programming

- · First formulate the problem recursively.
 - Describe the problem recursively in a clear and precise way.
 - · Give a recursive formula for the problem.
- · Bottom-up
 - · Identify all the subproblems.
 - · Choose a memoization data structure.
 - · Identify dependencies.
 - · Find a good evaluation order.
- · Top-down
 - · Identify all the subproblems.
 - · Choose a memoization data structure.
 - · Identify base cases.
 - · Remember to save results and check before computing.

s-t Cuts

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

Example

Network flow: s-t Cuts

• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

- · Capacity of cut: total capacity of edges going from S to T.
- Flow across cut: flow from S to T minus flow from T to S.
- Value of flow any flow |f| ≤ c(S,T) for any s-t cut (S,T).
- Suppose we have found flow f and cut (S,T) such that |f| = c(S,T). Then f is a
 maximum flow and (S,T) is a minimum cut.

Augmenting paths

- · Augmenting path: s-t path where
 - · forward edges have leftover capacity
 - · backwards edges have positive flow

- There is no augmenting path <=> f is a maximum flow.
- · Scaling algorithm:
 - Set Δ = highest power of two that is no larger than the largest capacity out of s.
 - Until $\Delta < 1$
 - Repeatedly find augmenting path in G_{Δ} , use it, until no augmenting path exists.
 - Set $\Delta = \Delta/2$
 - Running time: O(m² log C).

Augmenting paths

- · Augmenting path: s-t path where
 - · forward edges have leftover capacity
 - · backwards edges have positive flow

- There is no augmenting path <=> f is a maximum flow.
- · Ford-Fulkerson algorithm:
 - · Repeatedly find augmenting path, use it, until no augmenting path exists
 - · Running time: O(lf*| m).
- · Edmonds-Karp algorithm:
 - Repeatedly find shortest augmenting path, use it, until no augmenting path exists
 - · Use BFS to find a shortest augmenting path.
 - Running time: O(nm²)
- Find minimum cut. All vertices to which there is an augmenting path from s goes into S, rest into T.

Network flow

- · Can model and solve many problems via maximum flow.
 - · Maximum bipartite matching
 - · k edge-disjoint paths
 - · capacities on vertices
 - · Many sources/sinks
 - assignment problems: Example. X doctors, Y holidays, each doctor should work at at most c holidays, each doctor is available at some of the holidays.

Scheduling of doctors

- X doctors, Y holidays, each doctor should work at at most c holidays, each doctor is available at some of the holidays.
- Each doctor should work at most one day in each vacation period.

21

Dynamic array:

· 2-level rotated array

Amortized analysis

- · Amortized analysis.
 - Time required to perform a sequence of data operations is averaged over all the operations performed.
- · Example: dynamic tables with doubling and halving
 - If the table is full copy the elements to a new array of double size.
 - If the table is a quarter full copy the elements to a new array of half the size.
 - Worst case time for insertion or deletion: O(n)
 - · Amortized time for insertion and deletion: O(1)
 - Any sequence of n insertions and deletions takes time O(n).
- · Methods.
 - · Aggregate method
 - · Accounting method
 - · Potential method

Randomized algorithms

- · Contention resolution
- · Minimum cut
- · Coupon Collector.
- Selection
- Quicksort
- Hashing

String Matching

- · String matching problem:
 - string T (text) and string P (pattern) over an alphabet Σ . |T| = n, |P| = m.
 - · Report all starting positions of occurrences of P in T.
- Knuth-Morris-Pratt (KMP). Running time: O(m + n)
- String matching automaton. Running time: $O(n + m|\Sigma|)$

Hash tables and hash functions

- Theorem. We can solve the dictionary problem (without special assumptions) in:
 - · O(n) space.
 - · O(1) expected time per operation (lookup, insert, delete).
- Hash function. Given a prime p and $a = (a_1 a_2 ... a_r)_p$, define

$$h_a((x_1x_2...x_r)_p) = a_1x_1 + a_2x_2 + ... + a_rx_r \mod p$$

. Then $H=\{h_a\,|\,(a_1a_2...a_r)_p\in\{0,...,p-1\}^r\}$ is a universal family of hash functions.

Finite Automaton

• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P= ababaca.

Knuth-Morris-Pratt (KMP)

• Matched P[1...q]: Find longest block P[1..k] that matches end of P[2..q].

- Find longest prefix P[1...k] of P that is a proper suffix of P[1...q]
- Array π[1...m]:
 - $\pi[q] = \max k < q$ such that P[1...k] is a suffix of P[1...q].
- Can be seen as finite automaton with failure links:

i	1	2	3	4	5	6	7
π[i]	0	0	1	2	3	0	1

P and NP

- P solvable in deterministic polynomial time.
- NP solvable in non-deterministic (with guessing) polynomial time. Only the time for the right guess is counted.
- P⊆NP (every problem T which is in P is also in NP).
- It is not known (but strongly believed) whether the inclusion is proper, that is whether there is a problem in NP which is not in P.
- There is subclass of NP which contains the hardest problems, NP-complete problems.
- · Reductions.