String Matching

Inge Li Gartz

CLRS 32

String Matching

e String matching problem:
e string T (text) and string P (pattern) over an alphabet 2.
 |T| =n, |P|=m.

¢ Report all starting positions of occurrences of P in T.

P=ababaca
IT=bacbababababacahb

Strings
[[suots |

- €. empty string
- prefix/suffix: v=xy: s Il
* X prefix of v, if y # € X is a proper prefix of v [Feicis |

- y suffix of v, if y # € X is a proper suffix of v.
« Example: S = aabca,
« The suffixes of S are: aabca, abca, beca, ca and a.

« The strings abca, beca, ca and a are proper suffixes of S.

String Matching

e Knuth-Morris-Pratt (KMP)

¢ Fnite automaton

A naive string matching algorithm

bla|c|blal|bla|blalblalbla|c|a|b
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca

ababaca

Improving the naive algorithm

P=aaababa

T=a aab a a

aaababa
aalababa

Exploiting what we know from pattern

P=ababaca

T=|lababaal
ababaca How much should we shift the pattern? 5

ababacaabaca

T=|abab ab}
ababaca How much should we shift the pattern? 2

ababaca

T=|lababachi
ababaca How much should we shift the pattern? O
ababaca

Exploiting what we know from pattern

P=ababaca

T=|lababaa

X

a b ab a € a Whichcharacter in the pattern should we compare to x? 2

a

b

T=|lababab

X

abaca

a b ab a ¢ a Whichcharacter in the pattern should we compare to x? 5

abab

a

T=|lababac

X

C a

a b ab a c a Whichcharacter in the pattern should we compare to x? 7

ababac

a

Exploiting what we know from pattern

P=ababaca

T=lababaalk
ababaca How much can we “reuse”?

albla b ac a

T=|labab abl
ababaca How much can we “reuse”?

abab

QO
@)
QO

T=|labab acl
ababaca How much can we “reuse”?

ababac|a

Finite Automaton

e Finite automaton: alphabet > = {a,b,c}. P = ababaca.

accepting state

starting state
N /
oolrorrorro ooy
b

Finite Automaton

Finite Automaton

e Finite automaton: alphabet 2 = {a,b,c}. P = ababaca.

Staml{fta’t m@ @ ace/ptlng state
A 2

b,c

Finite Automaton

e Finite automaton: alphabet > = {a,b,c}. P = ababaca.

...........
. .

. .
. .

accepting state

starting state | .-

.......
.

.
0

s
.
.
'''''
. .

Finite Automaton

e Finite automaton: alphabet 2 = {a,b,c}. P = ababaca.

accepting state

/

starting state *
N &
oXVo 1 Tor o LYo CXIG
“ o

e State |: arc with character @ goes to state i < j +1 such that
PJ[1..i] is the longest prefix of P that is a suffix of P[1...j] - a.

Finite Automaton

e Finite automaton: alphabet 2 = {a,b,c}. P = ababaca.

T=|blacbababababacahb

Finite Automaton

e Finite automaton: alphabet 2 = {a,b,c}. P = ababaca.

If we are in state j after reading T[1..1],
then

P[1..]] is the longest prefix of P that

is a suffix of T[1..i].

T=|blacbababababacahb

Finite Automaton

If we are in state j after reading T[1..1],
then
P[1..]] is the longest prefix of P that
is a suffix of T[1..i].

P[1..J'] longest prefix of P that
s a suffix of T[1..i+1]. = P[1..J] longest prefix of P that

is a suffix of P[1..]] - ar.

P[1..)’-1] is a prefix of P[1..]].

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

Oacbcaoboaccoa.

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

Ca;boaoboaccoa.

a

read ‘a’?| | longest prefix of P that is a proper suffix of ‘aa’ = ‘a’

Matched until now: a a
P. ababaca

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

Ca;boaoboaccoa.

a

read ‘c’?| | longest prefix of P that is a proper suffix of ‘ac’ = *’

Matched until now: a ¢
P. ababaca

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

Ca;bcaoboaccoa.

a

read ‘b’?

longest prefix of P that is a proper suffix of ‘abb’ = *’

Matched until now:
P:

abb
ababaca

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

Ca;bcaoboaccoa.

a

read ‘c’?

longest prefix of P that is a proper suffix of ‘abc’ = *’

Matched until now:
P:

abc
ababaca

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

a
Cagjbgabboaccoa.
a

read ‘a’?

longest prefix of P that is a proper suffix of ‘abaa’ = ‘a’

Matched until now:
P:

ab aa
ababaca

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

a
Cagjbgabboaccoa.
a

read ‘c’?

longest prefix of P that is a proper suffix of ‘abac’ = *’

Matched until now:
P:

abac
ababaca

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

a
0acPoqnbgancne

a

read ‘b’?| | longest prefix of P that is a proper suffix of ‘ababb’ = *’

Matched untinow: a b a b b
P. ababaca

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

a

S iNe Tl gL LIGUIGE:

a

read ‘c’?

longest prefix of P that is a proper suffix of ‘ababc’ = *’

Matched until now:
P:

ababoc
ababaca

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

read ‘a’?

longest prefix of P that is a proper suffix of ‘ababaa’ = ‘a’

Matched until now:
P:

ababaa
ababaca

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

read ‘b’?|| longest prefix of P that is a proper suffix of ‘ababaa’ = ‘abab’

Matched untiinow: a b a b a b
P. ababaca

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

longest prefix of P that is a proper suffix of ‘ababacb’ = ¢’

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

longest prefix of P that is a proper suffix of ‘ababacc’ = *’

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

read ‘a’?

longest prefix of P that is a proper suffix of ‘ababacaa’ = ‘a’

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

read ‘b’?

longest prefix of P that is a proper suffix of ‘ababacab’ = ‘ab’

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

read ‘c’?

longest prefix of P that is a proper suffix of ‘ababacac’ = *’

Finite Automaton

e Finite automaton:
e (QQ: finite set of states

e Qo € Q: start state

e A C Q: set of accepting states

e > finite input alphabet

e O: transition function

e Matching time: O(n)
e Preprocessing time: O(m3|Z|). (Can be done in Om|Z)).

e Total time: O(n + m|X|)

KMP

KMP

e Finite automaton: alphabet > = {a,b,c}. P = ababaca.

KMP

e KMP: Can be seen as finite automaton with failure links:

e |ongest prefix of P that is a suffix of what we have matched until now
(ignore the mismatched character).

longest prefix of P that is a proper suffix of ‘aba’

KMP matching

e KMP: Can be seen as finite automaton with failure links:

e |ongest prefix of P that is a suffix of what we have matched until now.

T=|blacbababababacahb

KMP

e KMP: Can be seen as finite automaton with failure links:

e |ongest prefix of P that is a proper suffix of what we have matched until
NOW.

e can follow several failure links when matching one character:

T=|albabaa

KMP Analysis

* Analysis. [T|=n, |P|=m.
- How many times can we follow a forward edge?
- How many backward edges can we follow (compare to forward edges)?
- Total number of edges we follow?

« What else do we use time for?

KMP Analysis

- Lemma. The running time of KMP matching is O(n).
- Each time we follow a forward edge we read a new character of T.
- #backward edges followed < #forward edges followed < n.

 If in the start state and the character read in T does not match the forward
edge, we stay there.

- Total time = #non-matched characters in start state + #forward edges
followed + #backward edges followed < 2n.

If we are in state | after
reading T[1..i],
then

Computation of failure links P[1..j is the longest prefix of

P that
is a suffix of T[1..i].

- Failure link: longest prefix of P that is a proper suffix of what we have

matched until now.

longest proper prefix of P that is a suffix of ‘abab’

Matched untinow: a b a b
ababaca

Computation of failure links

- Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

- Computing failure links: Use KMP matching algorithm.

longest prefix of P that is a proper suffix of ‘abalb’

Cacb@ a@b a - C@a'

Computation of failure links

- Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

: : : . _ If we are in state j after
- Computing failure links: Use KMP matching algorithm. reading T[1..1,

then

. . , P[1..j] is the longest prefix of
longest prefix of P that is a suffix of ‘bab’ P that

is a suffix of T[1..i].
a b a b a C a
0520000008 |

Computation of failure links

- Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

: : : . _ If we are in state j after
- Computing failure links: Use KMP matching algorithm. reading T[1..1,

then

. . , P[1..j] is the longest prefix of
longest prefix of P that is a suffix of ‘bab’ P that

is a suffix of T[1..i].

Cacb@ a@b a - C@a'

Can be found by using KMP to match ‘bab’

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

* Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

e
O

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

* Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

* Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

* Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

T=|blab a

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

* Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

* Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

* Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

KMP

- Computing : As KMP matching algorithm (only need 1t values that are
already computed).

* Running time: O(n + m):

- Lemma. Total number of comparisons of characters in KMP is at most 2n.

- Corollary. Total number of comparisons of characters in the preprocessing
of KMP is at most 2m.

KMP: the 11 array

- 11 array: A representation of the failure links.

- Takes up less space than pointers.

mil |olof1[2]3]|0]1

