String Matching

e String matching problem:

e string T (text) and string P (pattern) over an alphabet 2.
String Matching o [T|=n,|Pl=m.
Inge Li Gortz ¢ Report all starting positions of occurrences of P in T.

P=ababaca
T=bacbababababacab

CLRS 32
Strings String Matching
_ [sufbcots | ,
+ £: empty string e Knuth-Morris-Pratt (KMP)
+ prefix/suffix: v=xy: sl
[Prbeots | ¢ Finite automaton

* x prefix of v, if y # € X is a proper prefix of v

* y suffix of v, if y # € X is a proper suffix of v.
« Example: S = aabca
- The suffixes of S are: aabca, abca, bca, ca and a.

« The strings abca, bea, ca and a, are proper suffixes of S.

A naive string matching algorithm

[blajc|bla|bla|b|a|b|a|blalc a|b]
ababaca

ababaca
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca

ababaca

Improving the naive algorithm

P=aaababa

T=[a a a b o -

aaababa
a alalbaba

Exploiting what we know from pattern

P=ababaca

T=a b a b 2 a KA

ababaca How much should we shift the pattern?
ababacaabaca
T=|labab ab}
ababaca How much should we shift the pattern?
ababaca

T=lababack

ababaca
ababaca

How much should we shift the pattern?

5

2

0

Exploiting what we know from pattern

P=ababaca

T=[a b a b 2 o EEE

a b a b a ¢ a Whichcharacter in the pattern should we compare to x? 2

a[bkaaca

T=labababf

a b a b a ¢ a Which character in the pattern should we compare to x? 5

abak{]ca

T=lababack

a b a b a ¢ a Whichcharacter in the pattern should we compare to x? 7
ababa({]

Exploiting what we know from pattern

P=ababaca

T=a b a b 2 o KSR

ababaca How much can we “reuse”?

a@abaca
T=lababab

ababaca How much can we “reuse”?
aba b@c a

T=lababack

ababaca How much can we “reuse”?
ababa CIEI

a
oneeeeew

Finite Automaton

e Finite automaton: alphabet 2 = {a,b,c}. P = ababaca.

accepting state

b

Finite Automaton

Finite Automaton

e Finite automaton: alphabet 2 = {a,b,c}. P = ababaca.

Finite Automaton

Finite Automaton

e Finite automaton: alphabet 2 = {a,b,c}. P = ababaca.

e State j: arc with character a goes to state i < j +1 such that
P[1..i] is the longest prefix of P that is a suffix of P[1...j] - a.

Finite Automaton

e Finite automaton: alphabet > = {a,b,c}. P = ababaca.

T=|Eacbababababacab

Finite Automaton

e Finite automaton: alphabet 2 = {a,b,c}. P = ababaca.

If we are in state j after reading T[1..i],
then

a P[1..j] is the longest prefix of P that
is a suffix of T[1..i].
m
G@G.GG i
b

T=|E|acbababababaoab

Finite Automaton

If we are in state j after reading T[1..],
then
P[1..j] is the longest prefix of P that
is a suffix of T[1..i].

i+

P[1..j'] longest prefix of P that
is a suffix of T[1..i+1]. = P[1..J] longest prefix of P that

is a suffix of P[1..j] - a.
P[1..j’-1] is a prefix of P[1..j.

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

CaCbCaCbCaCCCa.

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

Cagbcacbcaccca.

a

|read ‘a’?l | longest prefix of P that is a proper suffix of ‘aa’ = ‘a’

Matched untilnow: a 'a
P: ababaca

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

CagbCaCbCaCCCa.

a

|read ‘c’?l | longest prefix of P that is a proper suffix of ‘ac’ =’

Matched untilnow: a ¢
P: ababaca

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

Oa;bcacbcaocoa.

a

|read ‘b’?l | longest prefix of P that is a proper suffix of ‘abb’ = *’

Matched untilnow: a b b
P: ababaca

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

Oa;bcacbcaooca.

a

|read ‘c’?l | longest prefix of P that is a proper suffix of ‘abc’ = *~’

Matched untilnow: a b ¢
P: ababaca

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

a
a6~ 89 b,~38,C 3
02200200

|read ‘a’?l | longest prefix of P that is a proper suffix of ‘abaa’ = ‘a’

Matched untiinow: a b a'a
P: ababaca

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

a
o:@otcc
a

|read ‘c’?l | longest prefix of P that is a proper suffix of ‘abac’ = *’

Matched untinow: a b a ¢
P: ababaca

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

a
o iNe o> g LIS LIGUIGE:

a

|read ‘b’?l | longest prefix of P that is a proper suffix of ‘ababb’ = *’

Matched untinow: a b a b b
P: ababaca

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

a
o Ne To b oLYCLIGIIGE

a

|read ‘c’?l | longest prefix of P that is a proper suffix of ‘ababc’ = *’

Matched untinow: a b a b ¢
P: ababaca

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

|read ‘a’?l | longest prefix of P that is a proper suffix of ‘ababaa’ = ‘a’

Matched untinow: a b a b a a
P: ababaca

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

|read ‘b’?l | longest prefix of P that is a proper suffix of ‘ababaa’ = ‘abab’

Matched untinow: a b a b a b
P: ababaca

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

|read ‘b’?l | longest prefix of P that is a proper suffix of ‘ababacb’ = *’

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

|read ‘c’?l | longest prefix of P that is a proper suffix of ‘ababacc’ = *’

Finite Automaton Construction

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

|read ‘a’?l | longest prefix of P that is a proper suffix of ‘ababacaa’ = ‘a’

Finite Automaton Construction

e Finite automaton: alphabet 2 = {a,b,c}. P= ababaca.

C‘Mcc ®

|read ‘b’?l | longest prefix of P that is a proper suffix of ‘ababacab’ = ‘ab’

Finite Automaton Construction Finite Automaton
e Finite automaton: alphabet = = {a,b,c}. P= ababaca. e Finite automaton:

e Q: finite set of states

® qo € Q: start state

M e A C Q: set of accepting states
“ e 5 finite input alphabet
G ‘W. e &: transition function
b
b

|read ‘c’?l | longest prefix of P that is a proper suffix of ‘ababacac’ = *’

¢ Matching time: O(n)

¢ Preprocessing time: O(m3|Z]). (Can be done in O(M|Z])).

¢ Total time: O(n + mM|Z])

KMP

e Finite automaton: alphabet > = {a,b,c}. P = ababaca.

KMP

KMP

e KMP: Can be seen as finite automaton with failure links:

e longest prefix of P that is a suffix of what we have matched until now
(ignore the mismatched character).

| longest prefix of P that is a proper suffix of ‘aba’ |

KMP matching

e KMP: Can be seen as finite automaton with failure links:

e |ongest prefix of P that is a suffix of what we have matched until now.

T=|E|acbababababaoab

KMP

e KMP: Can be seen as finite automaton with failure links:

e |ongest prefix of P that is a proper suffix of what we have matched until
nNow.

e can follow several failure links when matching one character:

KMP Analysis

+ Analysis. [T|=n,|P|=m.
+ How many times can we follow a forward edge?
» How many backward edges can we follow (compare to forward edges)?
« Total number of edges we follow?

» What else do we use time for?

KMP Analysis

* Lemma. The running time of KMP matching is O(n).
» Each time we follow a forward edge we read a new character of T.
« #backward edges followed < #forward edges followed < n.

- If in the start state and the character read in T does not match the forward
edge, we stay there.

- Total time = #non-matched characters in start state + #forward edges
followed + #backward edges followed < 2n.

Computation of failure links

If we are in state j after
reading T[1..i],
then
P[1..j] is the longest prefix of
P that
is a suffix of T[1..i].

« Failure link: longest prefix of P that is a proper suffix of what we have

matched until now.

| longest proper prefix of P that is a suffix of ‘abab’ |

Matched untinow: a b a b
ababaca

Computation of failure links

+ Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

+ Computing failure links: Use KMP matching algorithm.

| longest prefix of P that is a proper suffix of ‘abab’ |

@ o LNGEI QLN GEFGLFGE

Computation of failure links

« Failure link: longest prefix of P that is a proper suffix of what we have

matched until now.

+ Computing failure links: Use KMP matching algorithm.

| longest prefix of P that is a suffix of ‘bab’ |

b
020 aégh@aeoea

If we are in state j after
reading T[1..i],
then
P[1..]] is the longest prefix of
P that
is a suffix of T[1..i].

Computation of failure links

» Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

) If we are in state | after
« Computing failure links: Use KMP matching algorithm. reading T[1...i,
then
- - - P[1..j] is the longest prefix of
| longest prefix of P that is a suffix of ‘bab’ | P that

is a suffix of T[1..i].
a b a b a c a
a0 000020

|Can be found by using KMP to match ‘bab'|

Computation of failure links

» Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

« Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

k{abyabaoa

[

Computation of failure links
+ Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

+ Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links
» Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

« Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links
+ Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

+ Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links
» Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

« Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links
+ Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

+ Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links
» Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

« Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

12 3 45 6 7

P=.|Eabaoa

KMP KMP: the 1t array

+ Computing 1: As KMP matching algorithm (only need 1t values that are + Tt array: A representation of the failure links.

already computed).
» Takes up less space than pointers.
* Running time: O(n + m):

» Lemma. Total number of comparisons of characters in KMP is at most 2n. i [1]2]3[4]|5]|6]7

+ Corollary. Total number of comparisons of characters in the preprocessing nfij [o|of1]2]3]0]1
of KMP is at most 2m.

