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Technical University of Denmark

Written exam, December 12, 2014.

Course name: Algorithms and data structures.

Course number: 02110.

Aids allow: All written materials are permitted.

Exam duration: 4 hours

Weighting: Question 1: 6% - Question 2: 24% - Question 3: 15% - Question 4: 18% - Question 5: 22% -
Question 6: 15%.

The weighting is only an approximative weighting.

You can answer the exam in either Danish or English.

All questions should be answered by filling out the room below the question. As exam paper
just hand in this and the following pages filled out. If you need more room you can use extra
paper that you hand in together with the exam paper.
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Question 1

In the following two questions, there might be more than one statement that is true (there might also be 0).

Question 1.1 Let T be a red-black tree with R red nodes and B black nodes (including the NIL leaves).
Which of the following statements are true:

A B ≤ R B R ≤ B C R ≥ 1/2B D R ≤ 1/2B E B ≤ 1/2R

Question 1.2 Let T be a 2-3-4 tree with n nodes and TR the corresponding red-black tree. Let R be the
number of red nodes in TR and B the number of black nodes in TR. Which of the following statements are
true:

A n = R+B B R ≤ n C B ≤ n D B ≥ n E R = n

Here we assume that we count the NIL leaves in both the 2-3-4 tree and in the red-black tree.
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Question 2

Question 2.1 Draw the suffix tree for the string abcabaca$ (don’t replace the labels by indexes into the
string, just write the labels on the edges):

3

a
$

b ca

b $

cabaca$aca$

ca$ cabaca$aca$ baca$ $

Question 2.2 Compute the prefix function as used in the Knuth-Morris-Pratt algorithm for the string
abcabaca:

i a b c a b a c a
π 0 0 0 1 2 1 0 1
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Question 2.3 Draw the string matching finite automata for the string abcabaca:

1 2 3 4 5 6 7 8 9a b c a b a c a
aa

a

a b ba

c
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Question 3

Consider the network N below with capacities on the edges.

A B C D

s E F t

G H I J

4 6 7

1 3 2

3 5 6

7

5 3 4 7

6 5 4 8

Question 3.1 Give a maximum flow from s to t in the network N (write the flow for each edge along the
edges on the graph below), give the value of the flow, and give a minimum s − t cut (give the partition of
the vertices).

A B C D

s E F t

G H I J

2/4 2/6 0/7

1/1 0/3 2/2

3/3 4/5 0/6

0/7

2/5 0/3 2/4 0/7

3/6 1/5 0/4 4/8

value of flow: 6

minimum cut: {s,A,B,C, F,G}, {D,E,H, I, J, t}
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Question 3.2 Use Edmonds-Karp’s algorithm to compute a maximum flow in the network N . For each
augmenting path write the nodes on the path and the value you augment the path with in the table below.

augmenting path value
sEFt 1
sGHIt 3
sABCFt 1

sABCFEHIt 1

The exam set continues on the next page 6
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Question 4

Given two sequences S = s1 · · · sm and T = t1 · · · tn, we want to find a string U that contains S and T as
subsequences. We call such a string U for a supersequence of S and T . A shortest supersequence is a super-
sequence of minimal length. If S = AABAB and T = BBABB then U1 = AABBABB, U2 = ABBABAB
and U3 = AABABBABB are all examples of supersequences of S and T . Both U1 and U2 are shortest
supersequences.

Let L(i, j) denote the length of the shortest supersequence of s1 · · · si and t1 · · · tj .

Question 4.1 Fill out the table below for L(i, j) when S = CCB and T = BCBC.

L(i, j) 0 1 2 3 4
0 0 1 2 3 4
1 1 2 2 3 4
2 2 3 3 4 4
3 3 3 4 4 5

Question 4.2 Which of the following recurrences correctly computes L(i, j):

A L(i, j) =



0 if i = 0 and j = 0

L(i− 1, 0) if j = 0 and i > 0

L(0, j − 1) if i = 0 and j > 0

L(i− 1, j − 1) + 1 if si = tj , i > 0, and j > 0

min{L(i− 1, j), L(i, j − 1)}+ 1 if si 6= tj , i > 0, and j > 0

B L(i, j) =


i if j = 0

j if i = 0

L(i− 1, j − 1) if si = tj , i > 0, and j > 0

min{L(i− 1, j), L(i, j − 1)}+ 1 if si 6= tj , i > 0, and j > 0

C L(i, j) =


i if j = 0

j if i = 0

L(i− 1, j − 1) + 1 if si = tj , i > 0, and j > 0

min{L(i− 1, j), L(i, j − 1)}+ 1 if si 6= tj , i > 0, and j > 0
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Question 4.3 Write the pseudocode for an algorithm based on dynamic programming and the recurrence
from Question 4.2 that finds the length of the shortest supersequence of two sequences S and T of length n
and m. Analyze the space usage and running time of your algorithm in terms of n and m.

COMPUTE-LENGTH()

L := n×m table

for i = 0 to n do

for j = 0 to m do

if i = 0 then

L[i, j] := j

else if j = 0 then

L[i, j] := i

else if s_i = t_j then

L[i, j] := L[i-1, j-1]] + 1

else

L[i, j] := min(L[i - 1, j], L[i, j - 1]) + 1

end if

end for

end for

return L[n, m]

Since we store the results to the subproblems in a table L of size n×m we use Θ(nm) space. The outer
loop always make n iterations and the inner loop always makes m iterations per iteration of the outer loop.
All other operations can be done in constant time, and thus the total time of the algorithm is Θ(nm).

The exam set continues on the next page 8
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Question 5

A zombie breakout has occurred in the country 1D and you have been asked by the prime minister to help
find solutions to stop the infection. You are given a map of the country, with coordinates of all cities. There
are X infected cities and Y uninfected cities. The map also contains information about all roads between
cities. A road goes directly to from one city to another and all roads are directed. There are R roads. A
city is reachable from the capital if you can follow one or more roads from the capital to the city. You can
assume that the travel time from the capital to any reachable city is no more than a day.

Question 5.1 The zombies only travel on the roads. The capital is still uninfected and the prime minister
wants to know how many roads that must be destroyed to keep the capital uninfected. Give an algorithm
to compute the minimum number of roads that has to be destroyed to cut off the capital from the infected
cities. Analyze the running time of your algorithm in terms of X, Y , and R. Remember to argue that your
algorithm is correct.

Solution Model the problem as a min s-t cut problem in a directed graph G = (V,E).There is a ver-
tex va for each city a and there is an edge from vertex va to vertex vb if and only if there is a road
from city a to city b. There is also a vertex s that is connected to all vertices representing infected
cities. That is, there is an edge from s to va if a is infected. Thus V = {va|a is a city} ∪ {s} and
E = {(va, vb)| there is a road from city a to city b}∪{(s, va)|a is infected}. The capacities on all edges from
s are set to ∞ and all other capacities are set to 1. Finding the minimum number of roads that needs to be
destroyed to cut off the capital corresponds to finding the minimum capacity s-t cut in the graph, where t
is the capital.

Correctness. If there is a set of Z roads cutting of the capital form the infected cities, then these edges is a
s-t cut in the graph of size Z. If there is a s-t cut in the graph of size Z < ∞ then destroying these roads
will cut off the capital from all the infected cities: since all edges from s have capacity∞ none of these edges
can be in the cut, and therefore all infected cities will be on the same side of the cut as s. Since the size of
min cut is less than ∞ (removing all edges except from the ones from s will give an s-t cut and this cut has
size R), finding a min cut in the graph solves the problem.

Analysis We have |V | = X + Y and |E| = R+X. If we use the Edmonds-Karp algorithm to find a min-cut
we get a running time of O(|V ||E|2) = O((X + Y )(R+X)2). If we use the Ford-Fulkerson algorithm we get
a running time of O(|f∗||E|) = O(|E|R) = O((R+X)R), since a min cut in the graph has size at most R.1

1Note: Since the analysis of the Ford-Fulkerson algorithm also applies to the Edmonds-Karp algorithm the running time of
Edmonds-Karp is O(min({(X + Y )(R+X)2, (R+X)R}) = O((R+X)R).

The exam set continues on the next page 9
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Question 5.2 Researchers in the center in the capital have found a vaccine. To get the vaccine to the
people in the uninfected cities we need to send 10 doctors to each uninfected city. The doctors can only
travel on the roads. They can go through infected cities but at most 50 doctors can go through each infected
city per day. Give an algorithm to decide whether we can get the vaccine out to all uninfected cities in one
day. Analyze the running time of your algorithm in terms of X, Y , and R. Remember to argue that your
algorithm is correct.

Solution Model the problem as a max flow problem in a directed graph G = (V,E). There is two vertices
vina and vouta for each city a. There is an edge from vina to vouta . The capacity of this edge is 50 if a is infected
and ∞ otherwise. There is an edge from vertex vouta to vertex vinb if and only if there is a road from city a to
city b. These edges have capacity ∞. There is also a vertex t that is connected with all vertices representing
uninfected cities. That is, there is an edge from vouta to t if a is uninfected. The capacities of these edges are 10.

Thus V = {vina |a is a city} ∪ {vouta |a is a city} ∪ {t} and
E = {(vina , vouta } ∪ {(vouta , vinb )| there is a road from city a to city b} ∪ {(vouta , t)|a is uninfected}.

We use a max flow algorithm to find the s-t maximum flow in the graph where s is the capital. If the
maximum flow is 10Y then we can get the vaccine to all uninfected city in one day.

Correctness. If there is a way to get 10 doctors to each uninfected city then there is a maximum flow of 10Y :
If x doctors travel on a road then assign a flow of x to the corresponding edges, and if x doctors go through a
city a assign a flow of x to the edge (vina , v

out
a ). Also assign a flow of 10 to each edge going from an uninfected

city to t. For all infected cities we can assume the doctors entering the city leaves again and therefore we
have flow conservation. For each uninfected city a we can assume that all except 10 doctors entering the
city leave again. Since we assigned a flow of 10 on the edge from vouta to t we have flow conservation in these
nodes as well. All capacity constraints are satisfied (at most 50 doctors go through an infected city and
exactly 10 stays in each uninfected city).

If there is a maximum flow of size 10Y then there is a way to get 10 the doctors to each uninfected
city: We know there always is an integral flow when the capacities are integral. We can send the doctors
according to the flow. Since the capacity on the edges (vina , v

out
a ) is 50 for all infected cities at most 50 doctors

go through each infected city. Since the capacity is 10 on all edges into t, we get exactly 10 doctors staying
in each uninfected city if the flow is 10Y .

Analysis. |V | = 2(X + Y ) and |E| = R + Y . If we use the Ford-Fulkerson algorithm we get a running time
of O(|f∗||E|) = O(10Y |E|) = O((R+ Y )Y ), since the maximum flow in the graph has size at most 10Y .

If we use the Edmonds-Karp algorithm to find a max-flow we get a running time of O(|V ||E|2) =
O((X + Y )(R+ Y )2). 2

2Note: Since the analysis of the Ford-Fulkerson algorithm also applies to the Edmonds-Karp algorithm the running time of
Edmonds-Karp is O(min({(X + Y )(R+ Y )2, (R+ Y )Y }) = O((R+ Y )Y ).
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Question 6

To find a vaccine against the zombie virus, researchers have been looking at genes from infected and uninfected
people. Assume we are given k strings S1, S2, . . . , Sk that we know are infected with virus, and one string
U that is virus free. All the strings are over an alphabet of size O(1). The total length of the strings is

n = |U | +
∑k

i=1 |Si|. An indicator string V is a string that is a substring of all the strings S1, S2, . . . , Sk,
but not a substring of U .

Given the strings S1, S2, . . . , Sk, U , and a positive integer ` we want to determine whether or not there
exists an indicator string V of length at least `.

Fx. is V = BA an indicator string for the set of strings below.

1 2 3 4 5 6 7 8 9 10 11 12

S1 = A B C A B A C C A
S2 = C C A B C A A B A
S3 = B A B C A A B C C A
S4 = C C A B C A C A B A
S5 = A B C A A B A C C A
U = A B B C A C C A B C C A

Question 6.1 Find an indicator string V of at length at least 3 for the strings above and give the position
of its first occurrence in each of the virus infected strings.

V = ABCA

Positions: S1 : 1, S2 : 3, S3 : 2, S4 : 3, S5 : 1.

11
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Question 6.2 Give an algorithm that given the strings S1, . . . , Sk and U of total length n, and an integer
`, finds an indicator string of length at least ` or reports that no such indicator string exists.

Analyze the running time of your algorithm. Remember to argue that your algorithm is correct.

Solution Construct the suffix tree for S1$1S2$2 · · · $k−1Sk$kT$k+1, where $i, for i = 1, . . . , k + 1, are
characters not in the alphabet. Mark for each node v and each i, 1 ≤ i ≤ k, wether there is a leaf in the
subtree of v there is a suffix of Si, and if there is a suffix of T in v’s subtree. This is marked bottom up
in a traversal of the tree, where the markings in a node is the merge of the markings of its children. Also
compute the string depth of each node during the traversal (the string depth of v is the length of the string
obtained by concatenating the characters on the path from the root to v).

If a node v has a marking for all Si but not for T and the string depth of v is at least ` then the string
obtained by concatenating the characters on the path from the root to v is an indicator string of length at
least `. If we find such a string during the traversal of the tree we report the string. Otherwise we report
”no indicator string of length at least ` exists”.

Analysis The suffix tree can be constructed in O(n) time, since the size of the alphabet is constant. The
marking takes time O(k) for each child of a node. Thus the marking takes O(nk) time in total. Computing
the string depth during a traversal takes constant time for each node and thus the running time of the
algorithm is O(nk).

Correctness Let I be an indicator string of length at least `. Find the corresponding position in the suffix
tree by following the path corresponding to from the root. If this is on an edge go to the vertex below. The
string corresponding to this vertex exists in all Si and thus all Si must be represented in the subtree of v.
I is not in T and therefore no leaf that is a suffix of T is in the subtree of v. Similarly, if there is a no
of string depth at least ` with leaves in the subtree corresponding to all Si but not T then the substring
corresponding to v occurs in all Si but not in T and is therefore an indicator string.
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