P and NP

Inge Li Gørtz

Overview

- Problem classification
- Tractable
- Intractable
- Reductions
- Tools for classifying problems according to relative hardness

Warm Up: Super Hard Problems

- Undecidable. No algorithm possible.
- Example. Halt (P, x) = true iff and only if P halts on input x.
- Claim. There is no general algorithm to solve $\operatorname{Halt}(P, x)$
- Proof (by contradiction)
- Suppose algorithm for Halt(P, x) exists.
- Consider algorithm $A(P)$ which loops infinitely if $\operatorname{Halt}(P, P)$ and otherwise halts.
- Since Halt (P, x) exists for all algorithms P we can use it on $A(A)$ and the following happens:
- If Halt(A,A) then we loop infinitely.
- Else (not Halt(A,A)) we halt.

Problem Classification

- Q. Which problems will we be able to solve in practice?
- A. Those with polynomial-time algorithms. (working definition) [von Neumann 1953, Godel 1956, Cobham 1964, Edmonds 1965, Rabin 1966]

Yes	No
Shortest path	Longest path
Min cut	Max cut
Soccer championship (2-point rule)	Soccer championship (3-point rule)
Primality testing	Factoring

Problem Classification

- Ideally, classify problems according to those that can be solved in polynomial-time and those that cannot.
- Provably requires exponential-time.
- Given a board position in an n-by-n generalization of chess, can black guarantee a win?
- Provably undecidable.
- Given a program and input there is no algorithm to decide if program halts.
- Frustrating news. Huge number of fundamental problems have defied classification for decades.

Polynomial-time Reductions

Instances

- A problem (problem type) is the general, abstract term:
- Examples: Shortest Path, Maximum Flow, Closest Pair, Sequence Alignment, String Matching.
- A problem instance is the concrete realization of a problem.
- Maximum flow. The instance consists of a flow network.
- Closest Pair. The instance is a set of points
- String Matching. The instance consists of two strings.

Polynomial-time reduction

- Reduction. Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using:
- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.
- Notation. $\mathrm{X} \leq \mathrm{p} \mathrm{Y}$.
- We pay for time to write down instances sent to black box \Rightarrow instances of Y must be of polynomial size.

Maximum flow and bipartite matching

- Bipartite matching \leq p Maximum flow

Maximum flow and maximum bipartite matching

- Bipartite matching \leq p Maximum flow
- Matching M => flow of value $|\mathrm{M}|$
- Flow of value $v(f)=>$ matching of size $v(f)$

Polynomial-time reductions

- Purpose. Classify problems according to relative difficulty.
- Design algorithms. If $X \leq p Y$ and Y can be solved in polynomial-time, then X can also be solved in polynomial time.
- Establish intractability. If $X \leq P Y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.
- Establish equivalence. If $X \leq p Y$ and $Y \leq p X$, we use notation $X=p Y$.

```
up to a
polynomial factor
```


Independent set and vertex cover

- Independent set: A set S of vertices where no two vertices of S are neighbors (joined by an edge).
- Independent set problem: Given graph G and an integer k, is there an independent set of size $\geq k$?
- Example:
- Is there an independent set of size ≥ 6 ?

Independent set and vertex cover

- Independent set: A set S of vertices where no two vertices of S are neighbors (joined by an edge).
- Independent set problem: Given graph G and an integer k, is there an independent set of size $\geq k$?
- Example:
- Is there an independent set of size ≥ 6 ? Yes

Independent set and vertex cover

- Independent set: A set S of vertices where no two vertices of S are neighbors (joined by an edge).
- Independent set problem: Given graph G and an integer k, is there an independent set of size $\geq k$?
- Example:
- Is there an independent set of size ≥ 6 ? Yes
- Is there an independent set of size ≥ 7 ?

Independent set and vertex cover

- Independent set: A set S of vertices where no two vertices of S are neighbors (joined by an edge).
- Independent set problem: Given graph G and an integer k, is there an independent set of size $\geq k$?
- Example:
- Is there an independent set of size ≥ 6 ? Yes
- Is there an independent set of size ≥ 7 ? No

Independent set and vertex cover

- Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.
- Independent set problem: Given graph G and an integer k, is there a vertex cover of size $\leq \mathrm{k}$?
- Example:
- Is there a vertex cover of size ≤ 4 ?

Independent set and vertex cover

- Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.
- Independent set problem: Given graph G and an integer k, is there a vertex cover of size $\leq \mathrm{k}$?
- Example:
- Is there a vertex cover of size ≤ 4 ? Yes

Independent set and vertex cover

- Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.
- Independent set problem: Given graph G and an integer k, is there a vertex cover of size $\leq \mathrm{k}$?
- Example:
- Is there a vertex cover of size ≤ 4 ? Yes
- Is there a vertex cover of size ≤ 3 ?

Independent set and vertex cover

- Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.
- Independent set problem: Given graph G and an integer k, is there a vertex cover of size $\leq \mathrm{k}$?
- Example:
- Is there a vertex cover of size ≤ 4 ? Yes
- Is there a vertex cover of size ≤ 3 ? No

Independent set and vertex cover

- Claim. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph. Then S is an independent set if and only if its complement V-S is a vertex cover.
- Proof.
- =>: S is an independent set.
vertex cover
independent set

Independent set and vertex cover

- Claim. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph. Then S is an independent set if and only if its complement V-S is a vertex cover.
- Proof.
- =>: S is an independent set.
- e cannot have both endpoints in $\mathrm{S}=>$ e have an endpoint in V-S.
- V-S is a vertex cover.
vertex cover
independent set

Independent set and vertex cover

- Claim. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph. Then S is an independent set if and only if its complement V-S is a vertex cover.
- Proof.
- =>: S is an independent set.
- e cannot have both endpoints in $\mathrm{S}=>$ e have an endpoint in V-S.
- V-S is a vertex cover
- <=: V-S is a vertex cover.
vertex cover
independent set

Independent set and vertex cover

- Claim. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph. Then S is an independent set if and only if its complement V-S is a vertex cover.
- Proof.
- =>: S is an independent set.
- e cannot have both endpoints in $\mathrm{S}=>$ e have an endpoint in V-S.
- V-S is a vertex cover
- <=: V-S is a vertex cover.
- u and v not part of the vertex cover $=>$ no edge between u and v
- S is an independent set.vertex cover
independent set

Independent set and vertex cover

- Claim. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph. Then S is an independent set if and only if its complement V-S is a vertex cover.
- Independent set sp vertex cover
- Use one call to the black box vertex cover algorithm with $k=n-k$.
- There is an independent set of size $\geq k$ if and only if the vertex cover algorithm returns yes.
- vertex cover \leq pindependent set
- Use one call to the black box independent set algorithm with $\mathrm{k}=\mathrm{n}-\mathrm{k}$.

Set cover

- Set cover. Given a set U of elements, a collection of sets $S_{1}, \ldots S_{m}$ of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U ?

Set cover

- Set cover. Given a set U of elements, a collection of sets $S_{1}, \ldots S_{m}$ of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U ?
- Example:
- Does there exist a set cover of size at most 6 ?

Set cover

- Set cover. Given a set U of elements, a collection of sets $S_{1}, \ldots S_{m}$ of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U ?
- Example:
- Does there exist a set cover of size at most 6 ? Yes

Set cover

- Set cover. Given a set U of elements, a collection of sets $S_{1}, \ldots S_{m}$ of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U ?
- Example:
- Does there exist a set cover of size at most 6 ? Yes

Set cover

- Set cover. Given a set U of elements, a collection of sets $S_{1}, \ldots S_{m}$ of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U ?
- Example:
- Does there exist a set cover of size at most 6 ? Yes
- Does there exist a set cover of size at most 4 ?

Set cover

- Set cover. Given a set U of elements, a collection of sets $S_{1}, \ldots S_{m}$ of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U ?
- Example:
- Does there exist a set cover of size at most 6 ? Yes
- Does there exist a set cover of size at most 4? Yes

Set cover

- Set cover. Given a set U of elements, a collection of sets $S_{1}, \ldots S_{m}$ of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U ?
- Example:
- Does there exist a set cover of size at most 6 ? Yes
- Does there exist a set cover of size at most 4? Yes
- Does there exist a set cover of size at most 3 ? No

Reduction from vertex cover to set cover

- vertex cover \leq p set cover

Reduction from vertex cover to set cover

- vertex cover $\leq p$ set cover
- $U=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}, e_{11}, e_{12}, e_{13}, e_{14}\right\}$
- $S_{1}=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$
- $S_{2}=\left\{e_{1}, e_{11}, e_{10}\right\}$
- $S_{3}=\left\{e_{2}, e_{8}\right\}$
- $S_{4}=\left\{e_{3}, e_{9}\right\}$
- $S_{5}=\left\{\mathrm{e}_{4}, \mathrm{e}_{5}\right\}$
- $\mathrm{S}_{6}=\left\{\mathrm{e}_{5}, \mathrm{e}_{6}, \mathrm{e}_{7}\right\}$
- $S_{7}=\left\{e_{7}, e_{13}\right\}$
- $\mathrm{S}_{8}=\left\{\mathrm{e}_{8}, \mathrm{e}_{9}, \mathrm{e}_{10}, \mathrm{e}_{12}, \mathrm{e}_{13}, \mathrm{e}_{14}\right\}$
- $S_{9}=\left\{\mathrm{e}_{11}, \mathrm{e}_{12}\right\}$
- $S_{10}=\left\{\mathrm{e}_{6}, \mathrm{e}_{14}\right\}$

Polynomial-time reductions

- Reduction. $\mathrm{X} \leq \mathrm{p} \mathrm{Y}$ if arbitrary instances of problem X can be solved using:
- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.
- Strategy to make a reduction if we only need one call to the oracle/black box to solve X:

1. Show how to turn (any) instance S_{x} of X into an instance of S_{y} of Y in polynomial time.
2. Show that: S_{x} a yes instance of $X=>S_{y}$ a yes instance of Y.
3. Show that: S_{y} a yes instance to $Y=>S_{x}$ a yes instance of X.

- Reductions that needs more than one call to black box:

1. Show how to turn (any) instance S_{x} of X into a polynomial number instance of $S_{y, i}$ of Y in polynomial time.
2. Show: S_{x} a yes instance of $X=>$ one of the instances $S_{y, i}$ is a yes instance of Y.
3. Show: one of the instances $S_{y, i}$ is a yes instance of $Y=>S_{x}$ a yes instance of X.

P and NP

The class P

- P ~ problems solvable in deterministic polynomial time.
- Given a problem type X, there is a deterministic algorithm A which for every problem instance $I \in X$ solves $/$ in a time that is polynomial in $|I|$, the size of I.
- I.e., the running time of A is $\mathrm{O}\left(|/|{ }^{k}\right)$ for all $I \in \mathrm{X}$, where k is constant independent of the instance l.
- Examples.
- Closest pair: There is an algorithm A such that for every set S of points, A finds a closest pair in time $\mathrm{O}\left(|\mathrm{S}|^{2}\right)$.
- Maximum flow: There is an algorithm A such that for any network, A finds a maximum flow in time $\mathrm{O}\left(|\mathrm{V}|^{3}\right)$, where V is the set of vertices.

Hard problems: Example

- Problem [POTATO SOUP]. A recipe calls for B grams of potatoes. You have a K kilo bag with n potatoes. Can one select some of them such that their weight is exactly B grams?

- Best known solution: create all 2^{n} subsets and check each one.

Hard problems

- Many problems share the above features
- Can be solved in time $2^{|T|}$ (by trying all possibilities.)
- Given a potential solution, it can be checked in time $\mathrm{O}\left(\left\|\|^{k}\right)\right.$, whether it is a solution or not.
- These problems are called polynomially checkable.
- A solution can be guessed, and then verified in polynomial time.

The class NP

- Certifier. Algorithm $\mathrm{B}(\mathrm{s}, \mathrm{t})$ is an efficient certifier for problem X if:

1. $B(s, t)$ runs in polynomial time.
2. For every instance s: $\quad s$ is a yes instance of X
\Leftrightarrow
there exists a certificate t of length polynomial in s and $B(s, t)$ returns yes.

- Example. Independent set.
- s: a graph G and an integer k.
- t: a set of vertices from G.
- $B(s, t)$ returns yes if and only if t is an independent set of G and $|S| \geq k$.
- This can be checked in polynomial time by checking that no two vertices in t are neighbors and that the size is at least k.
- A problem X is in the class NP (Non-deterministic Polynomial time) if X has an efficient certifier.

Optimization vs decision problems

- Consider decision problems (yes-no-problems).
- Example.
- [POTATO SOUP]. A recipe calls for B grams of potatoes. You have a K kilo bag with n potatoes. Can one select some of them such that their weight is exactly B grams?
- Optimization vs decision problem
- [OPTIMIZATION LONGEST PATH] Given a graph G. What is the length of the longest simple path?
- [DECISION LONGEST PATH] Given a graph G and integer k. Is a there a simple path of length $\geq \mathrm{k}$?
- Exercise. Show that OPTIMIZATION LONGEST PATH can be solved in polynomial time if and only if DECISION LONGEST PATH can be solved in polynomial time.

P vs NP

- P solvable in deterministic polynomial time.
- NP solvable in non-deterministic polynomial time/ has an efficient (polynomial time) certifier.
- $\mathrm{P} \subseteq$ NP (every problem T which is in P is also in NP).
- It is not known (but strongly believed) whether the inclusion is proper, that is whether there is a problem in NP which is not in P.
- There is subclass of NP which contains the hardest problems, NP-complete problems:
- X is NP-Complete if
- $X \in N P$
- $Y \leq p X$ for all $Y \in N P$

Examples of NP-complete problems

- Preparing potato soup
- Packing your suitcase
- Satisfiability of clauses
- Partition
- Subset-sum
- Hamilton Cycle
- Travelling Salesman
- Bin Packing
- Knapsack
- Clique
- Independent Set
- Vertex Cover
- Set Cover

NP-complete problems

- [SOCCER CHAMPIONSHIP 3-POINT RULE] In a football league n teams compete for the championship. The leagues uses the 3-point rule, i.e., the points of match are distributed as 3:0, 1:1, or 0:3.
- Input. The table with the points of every team at some point in the season, a list of the matches to be played in that season and the name of some team.
- Output.
- YES if the named team still can become champion
- NO otherwise.

NP-complete problems

- [SATISFIABILITY]
- Input: A set of clauses $C=\{c 1, \ldots, c k\}$ over n boolean variables $\times 1, \ldots, x n$.
- Output:
- YES if there is a satisfying assignment, i.e., if there is an assignment $a:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{0,1\}$ such that every clause is satisfied,
- NO otherwise.

$$
\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)
$$

$$
x_{1}=1, x_{2}=1, x_{3}=0, x_{4}=1
$$

NP-complete problems

- [HAMILTONIAN CYCLE].
- Input: Undirected graph G
- Output:
- YES if there exists a simple cycle that visits every node
- NO otherwise

instance s

certificate t
- Traveling Salesperson Problem TSP: Given a set of n cities and a pairwise distance function $\mathrm{d}(\mathrm{u}, \mathrm{v})$, is there a tour of length $\leq \mathrm{D}$?

All 13,509 cities in US with a population of at least 500
Reference: http://www.tsp.gatech.edu

- Traveling Salesperson Problem TSP: Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

How to prove a problem is NP-complete

1. Prove $Y \in N P$ (that it can be verified in polynomial time).
2. Select a known NP-complete problem X.
3. Give a polynomial time reduction from X to Y (prove $X \leq p Y$):

- Explain how to turn an instance of X into one or more instances of Y
- Explain how to use a polynomial number of calls to the black box algorithm/ oracle for Y to solve X .
- Prove/argue that the reduction is correct.

Reduction example

- [HAMILTONIAN CYCLE]. Given a undirected graph $G=(\mathrm{V}, \mathrm{E})$, does there exists a simple cycle that visits every node?
- [TRAVELLING SALESMAN (TSP)] Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?
- Show Hamiltonian Cycle \leq p TSP:
- Idea: For every instance of Hamiltonian Cycle create an instance of TSP such that the TSP instance has tour of length $\leq \mathrm{n}$ if and only if G has a Hamiltonian cycle.
- Reduction.
- Given instance $G=(\mathrm{V}, \mathrm{E})$ of Hamiltonian Cycle, create n cities with distance function

$$
d(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ 2 & \text { if }(u, v) \notin E\end{cases}
$$

- TSP instance has tour of length $\leq \mathrm{n}$ if and only if G has a Hamiltonian cycle.

Reduction example

- [GLASSES IN A CUPBOARD]. You have n glasses of equal height. If glass g_{j} is put into glass g_{i} let $d_{i j}$ be the amount of g_{j} above the rim of g_{i}. You want to stack them into a single stack, so they fit into a cupboard of height h ; is that possible?

- Glasses in a Cupboard in NP: Proposed solution can be verified in polynomial time.
- NP-completeness:
- Reduction from Directed Hamiltonian Path (DHP).
- Directed Hamiltonian Path: Given a directed graph G, is there a directed simple path visiting all vertices.
- DHP is NP-complete
- Reduction: For every instance (graph) of DHP make a set of glasses and a cupboard, such that the glasses can be stacked into the cupboard if and only if the graph has a Hamiltonian path.

Reduction example

- Let $G=(E, V)$ a directed graph.
- Make one glass for every node $i \in V$.
- If (i, j) $\in \mathrm{E}$ ensure:

- If (i, j) $\notin \mathrm{E}$ ensure:

- Glass i is red, glass j is yellow.
- Height of the cupboard is $|\mathrm{V}|-1$ + height of glass

Reduction Example

Reduction Example

The Main Question: P Versus NP

- Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
- Is the decision problem as easy as the certification problem?
- Clay $\$ 1$ million prize.

- Consensus opinion on $\mathrm{P}=\mathrm{NP}$? Probably no.

