Balanced Search Trees

2-3-4 trees
red-black trees

References: Algorithms in Java (handout)

Balanced search trees

Dynamic sets

- Search
- Insert
- Delete
- Maximum
- Minimum
- Successor(x) (find minimum element $\geq x$)
- Predecessor(x) (find maximum element $\leq x$)

This lecture: 2-3-4 trees, red-black trees
Next time: Tiered vektor (not a binary search tree, but maintains a dynamic set).
In two weeks time: Splay trees

Dynamic set implementations

Worst case running times

| Implementation | search | insert | delete | minimum | maximum | successor | predecessor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| linked lists | $\mathrm{O}(\mathrm{n})$ | $\mathrm{O}(1)$ | $\mathrm{O}(1)$ | $\mathrm{O}(\mathrm{n})$ | $\mathrm{O}(\mathrm{n})$ | $\mathrm{O}(\mathrm{n})$ | $\mathrm{O}(\mathrm{n})$ |
| ordered array | $\mathrm{O}(\log \mathrm{n})$ | $\mathrm{O}(\mathrm{n})$ | $\mathrm{O}(\mathrm{n})$ | $\mathrm{O}(1)$ | $\mathrm{O}(1)$ | $\mathrm{O}(\mathrm{log} \mathrm{n})$ | $\mathrm{O}(\mathrm{log} \mathrm{n})$ |
| BST | $\mathrm{O}(\mathrm{h})$ |

In worst case h=n.
In best case $h=\log n$ (fully balanced binary tree)
Today: How to keep the trees balanced.

2-3-4 trees

2-3-4 trees

2-3-4 trees. Allow nodes to have multiple keys.
Perfect balance. Every path from root to leaf has same length.
Allow 1, 2, or 3 keys per node

- 2-node: one key, 2 children
- 3-node: 2 keys, 3 children
- 4-node: 3 keys, 4 children

Searching in a 2-3-4 tree

Search.

- Compare search key against keys in node.
- Find interval containing search key
- Follow associated link (recursively)

Searching in a 2-3-4 tree

Search.

- Compare search key against keys in node.
- Find interval containing search key
- Follow associated link (recursively)

Ex. Search for L

Predecessor and successor in a 2-3-4 tree

Where is the predecessor of L ?
And the successor of L ?

Insertion in a 2-3-4 tree

Insertion in a 2-3-4 tree

Insert.

- Search to bottom for key.

Ex. Insert B

Insertion in a 2-3-4 tree

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node

Ex. Insert B

Insertion in a 2-3-4 tree

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node

Ex. Insert X

Insertion in a 2-3-4 tree

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node

Ex. Insert X

Insertion in a 2-3-4 tree

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node

Ex. Insert H

Insertion in a 2-3-4 tree

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node
- 4-node at bottom: ??

Ex. Insert H

Splitting a 4-node in a 2-3-4 tree

Idea: split the 4-node to make room

Problem: Doesn't work if parent is a 4-node
Solution 1: Split the parent (and continue splitting while necessary).

Solution 2: Split 4-nodes on the way down.

Splitting 4-nodes in a 2-3-4 tree

Idea: split 4-nodes on the way down the tree.

- Ensures last node is not a 4-node.
- Transformations to split 4-nodes:

Invariant. Current node is not a 4-node.
Consequence. Insertion at bottom is easy since it's not a 4-node.

Insertion in a 2-3-4 tree

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node
not a 4-node
- 4-node at bottom: ??

Ex. Insert H

Insertion in a 2-3-4 tree

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node
- 4-node at bottom: ??

Ex. Insert H

Insertion in a 2-3-4 tree

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node
- 4-node at bottom: ??

Ex. Insert H

Splitting 4-nodes in a 2-3-4 tree

Local transformations that work anywhere in the tree.

Ex. Splitting a 4-node attached to a 2-node

Splitting 4-nodes in a 2-3-4 tree

Local transformations that work anywhere in the tree

Ex. Splitting a 4-node attached to a 3-node

Splitting 4-nodes in a 2-3-4 tree

Local transformations that work anywhere in the tree.

Splitting a 4-node attached to a 4-node never happens when we split nodes on the way down the tree.

Invariant. Current node is not a 4-node.

Insertion 2-3-4 trees

Deletions in 2-3-4 trees

Delete minimum:

- minimum always in leftmost leaf
- If 3- or 4-node: delete key

Ex. Delete minimum

Deletions in 2-3-4 trees

Delete minimum:

- minimum always in leftmost leaf
- If 3- or 4-node: delete key

Ex. Delete minimum

Delete A

Deletions in 2-3-4 trees

Delete minimum:

- minimum always in leftmost leaf
- If 3- or 4-node: delete key
- 2-node??

Ex. Delete minimum

Deletions in 2-3-4 trees

Idea: On the way down maintain the invariant that current node is not a 2-node.

- Child of root and root is a 2-node:

Deletions in 2-3-4 trees

Delete minimum:

- minimum always in leftmost leaf
- If 3- or 4-node: delete key
- 2-node: split/merge on way down.

Ex. Delete minimum

Deletions in 2-3-4 trees

Delete minimum:

- minimum always in leftmost leaf
- If 3- or 4-node: delete key
- 2-node: split/merge on way down.

Ex. Delete minimum

Deletions in 2-3-4 trees

Delete minimum:

- minimum always in leftmost leaf
- If 3- or 4-node: delete key
- 2-node: split/merge on way down.

Ex. Delete minimum

Deletions in 2-3-4 trees

Delete:

Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2 -node

Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2 -node
- If key is in a leaf: delete key

Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete K

Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete K

- Find successor

Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete K

- Find successor

Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete K

- Find successor

Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete K

- Find successor

Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete K

- Find successor

Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete K

- Find successor
- Delete L from leaf

Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete K

- Find successor
- Delete L from leaf

Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete K

- Find successor
- Delete L from leaf
- Replace K with L

Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete K

- Find successor
- Delete L from leaf
- Replace K with L

2-3-4 Tree: Balance

Property. All paths from root to leaf have same length.

Tree height.
Worst case: Ig N [all 2-nodes]
Best case: $\quad \log _{4} \mathrm{~N}=1 / 2 \lg \mathrm{~N} \quad$ [all 4-nodes]
Between 10 and 20 for a million nodes.
Between 15 and 30 for a billion nodes.

Dynamic set implementations

Worst case running times

| Implementation | search | insert | delete | minimum | maximum | successor | predecessor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| linked lists | $\mathrm{O}(\mathrm{n})$ | $\mathrm{O}(1)$ | $\mathrm{O}(1)$ | $\mathrm{O}(\mathrm{n})$ | $\mathrm{O}(\mathrm{n})$ | $\mathrm{O}(\mathrm{n})$ | $\mathrm{O}(\mathrm{n})$ |
| ordered array | $\mathrm{O}(\log \mathrm{n})$ | $\mathrm{O}(\mathrm{n})$ | $\mathrm{O}(\mathrm{n})$ | $\mathrm{O}(1)$ | $\mathrm{O}(1)$ | $\mathrm{O}(\log \mathrm{n})$ | $\mathrm{O}(\log \mathrm{n})$ |
| BST | $\mathrm{O}(\mathrm{h})$ |
| $2-3-4$ tree | $\mathrm{O}(\log \mathrm{n})$ |

Red-black trees

Red-black tree (Guibas-Sedgewick, 1979)

Represent 2-3-4 tree as a binary search tree

- Use colors on nodes to represent 3- and 4-nodes.

Red-black tree (Guibas-Sedgewick, 1979)

Represent 2-3-4 tree as a binary search tree

- Use colors on nodes to represent 3- and 4-nodes.

- Connection between 2-3-4 trees and red-black trees:

Red-black tree (Guibas-Sedgewick, 1979)

Represent 2-3-4 tree as a binary search tree

- Use colors on nodes to represent 3- and 4-nodes.

- Connection between 2-3-4 trees and red-black trees:

Red-black tree

Properties of red-black trees:

- The root is always black
- All root-to-leaf paths have the same number of black nodes.
- Red nodes do not have red children

Red-black tree

Connection between 2-3-4 trees and red-black trees:

Red-black tree

Connection between 2-3-4 trees and red-black trees:

Red-black tree

Connection between 2-3-4 trees and red-black trees:

Insertion in red-black trees

Insertion: Insert a new red leaf.

Red-black tree: Parent is red

What if the parent is also red?

Easy case:

Red-black tree: Parent is red

What if both the parent and the grandparent are red?

Red-black tree: Parent is red

What if both the parent and the grandparent are red?

Red-black tree: Parent is red

What if the parent is also red?

??

Rotations in red-black trees

Two types of rotations

Rotations in red-black trees

Two types of rotations:

Insertion in red-black tree

Example

Example

Running times in red-black trees

- Time for insertion:
- Search to bottom after key: O(h)
- Insert red leaf: O(1)
- Perform recoloring and rotations on way up: O(h)
- Can recolor many times (but at most h)
- At most 2 rotations.
- Total $\mathrm{O}(\mathrm{h})$.
- Time for search
- Same as BST: O(h)
- Height: $\mathrm{O}(\log \mathrm{n})$

Dynamic set implementations

Worst case running times

Implementation	search	insert	delete	minimum	maximum	successor	predecessor
linked lists	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(1)$	O(1)	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$
ordered array	$O(\log n)$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(1)$	$\mathrm{O}(1)$	$\mathrm{O}(\log \mathrm{n})$	$\mathrm{O}(\log \mathrm{n})$
BST	$\mathrm{O}(\mathrm{h})$						
2-3-4 tree	$O(\log n)$	O(log n)	O(logn)	O(logn)	O(logn)	$\mathrm{O}(\log \mathrm{n})$	$\mathrm{O}(\log \mathrm{n})$
red-black tree	$O(\log n)$	$\mathrm{O}(\log \mathrm{n})$	$\mathrm{O}(\log \mathrm{n})$	$\mathrm{O}(\log \mathrm{n})$	O(logn)	$\mathrm{O}(\log \mathrm{n})$	$\mathrm{O}(\log \mathrm{n})$

Balanced trees: implementations

Redblack trees:

Java: java.util.TreeMap, java.util.TreeSet.
C++ STL: map, multimap, multiset.

Linux kernel: linux/rbtree.h.

