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• Probability spaces.


• Set of possible outcomes .


• Each element  has probability  and .


• Event  is a subset of  and probability of  is .


• The complementary event  is  and .


• Example. Flip two fair coins. 


• .


•  for each outcome i.


• Event  = "the coins are the same" 


• .

Ω

𝗂 ∈ Ω 𝗉(𝗂) ≥ 𝟢 ∑
𝗂∈Ω

𝗉(𝗂) = 𝟣

𝖤 Ω E Pr(𝖤) = ∑
𝗂∈𝖤

𝗉(𝗂)

𝖤 Ω − 𝖯 Pr(𝖤) = 𝟣 − Pr(𝖤)

Ω = {𝖧𝖧, 𝖧𝖳, 𝖳𝖧, 𝖳𝖳}
𝗉(𝗂) = 𝟣/𝟦

𝖤
Pr(𝖤) = 𝟣/𝟤

Probability

𝖧𝖧 𝖳𝖳

𝖳𝖧 𝖧𝖳

Ω𝖤

𝖤



• Conditional probability.


• What is the probability that event  occurs given that event  occurred?


• The conditional probability of  given :





• Example.


•

𝖤 𝖥
𝖤 𝖥

Pr(𝖤 ∣ 𝖥) =
Pr(𝖤 ∩ 𝖥)

Pr(𝖥)

Pr(𝖤 ∣ 𝖥) =
Pr(𝖤 ∩ 𝖥)

Pr(𝖥)
=

2/8
5/8

=
2
5

Probability
𝖤 𝖥



• Independence.


• Events  and  are independent if information about  does not affect outcome 
of  and vice versa. 


 


• Same as  

𝖤 𝖥 𝖤
𝖥

Pr(𝖤 ∣ 𝖥) = Pr(𝖤) Pr(𝖥 ∣ 𝖤) = Pr(𝖥)

Pr(𝖤 ∩ 𝖥) = Pr(𝖤) ⋅ Pr(𝖥)

Probability



• Union bound.

• What is the probability that any of event E1, ..., Ek will happen, i.e., what is 

? 


• If events are disjoint, .


• If events overlap, .

• In both cases, the union bound holds:


Pr(𝖤𝟣 ∪ 𝖤𝟤 ∪ ⋯ ∪ 𝖤𝗄)

Pr(𝖤𝟣 ∪ ⋯ ∪ 𝖤𝗄) = Pr(𝖤𝟣) + ⋯ + Pr(𝖤𝗄)
Pr(𝖤𝟣 ∪ ⋯ ∪ 𝖤𝗄) < Pr(𝖤𝟣) + ⋯ + Pr(𝖤𝗄)

Pr(𝖤𝟣 ∪ ⋯ ∪ 𝖤𝗄) ≤ Pr(𝖤𝟣) + ⋯ + Pr(𝖤𝗄)

Probability

𝖤𝟣

𝖤𝟤 𝖤𝟥

𝖤𝟣

𝖤𝟤 𝖤𝟥
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• Contention resolution. Consider n processes  trying to access a shared 
database:  

• If two or more processes access database at the same time, all processes are 

locked out. 

• Processes cannot communicate. 


• Goal. Come up with a protocol to ensure all processes will access database. 

• Challenge. Need symmetry breaking paradigm.  

𝖯𝟣, …, 𝖯𝗇

Contention Resolution

database

𝖯𝟣

𝖯𝟤

𝖯𝗇



• Applications. 

• Distributed communication and interference. 

• Illustrates simplicity and power of randomized algorithms. 

Contention Resolution



• Protocol. Each process accesses the database at time t with probability p = 1/n.

Contention Resolution

database

𝖯𝟣

𝖯𝟤

𝖯𝗇



• Analysis. How do we analyze the protocol?

Contention Resolution

database

𝖯𝟣

𝖯𝟤

𝖯𝗇



• Success for a single process in a single round. 


•  event that  successfully accesses database at time .


 

𝖲𝗂,𝗍 = 𝖯𝗂 𝗍

Pr (𝖲𝗂,𝗍) = 𝗉(𝟣 − 𝗉)𝗇−𝟣 =
𝟣
𝗇 (𝟣 −

𝟣
𝗇 )

𝗇−𝟣

≥
𝟣
𝖾𝗇

Contention Resolution

probability that process 
i requests access.

probability that no other 
process requests access.  converges to  from above.(𝟣 −

𝟣
𝗇 )

𝗇−𝟣

𝟣/𝖾



• Failure for a single process in rounds . 


•  event that  fails to access database in any of rounds . 


 


• 


•

𝟣, …, 𝗍
𝖥𝗂,𝗍 = 𝖯𝗂 𝟣, …, 𝗍

Pr (𝖥𝗂,𝗍) = Pr (
𝗍

⋂
𝗋=𝟣

𝖲𝗂,𝗋) =
𝗍

∏
𝗋=𝟣

Pr (𝖲𝗂,𝗋) = (𝟣 −
𝟣
𝗇 (𝟣 −

𝟣
𝗇 )

𝗇−𝟣

)
𝗍

≤ (𝟣 −
𝟣
𝖾𝗇 )

𝗍

𝗍 = ⌈𝖾𝗇⌉ ⇒ Pr (𝖥𝗂,𝗍) ≤ (𝟣 −
𝟣
𝖾𝗇 )

⌈𝖾𝗇⌉

≤ (𝟣 −
𝟣
𝖾𝗇 )

𝖾𝗇

≤
𝟣
𝖾

𝗍 = ⌈𝖾𝗇⌉(𝖼 ln 𝗇) ⇒ Pr (𝖥𝗂,𝗍) ≤ ( 𝟣
𝖾 )

𝖼 ln 𝗇

=
𝟣
𝗇𝖼

Contention Resolution

probability that  does not 
succeed in round 1 and 
round 2 and ... and round t.

𝖯𝗂 independence.
Pr (𝖲𝗂,𝗍) ≥

𝟣
𝖾𝗇

 converges to 

 from below.
(𝟣 −

𝟣
𝗇 )

𝗇

𝟣/𝖾



• Failure for at least one process in rounds . 


•  event that at least one of n processes fails to access database in any of 
rounds . 





• .


• ⇒ Probability that all processes successfully access the database after 

 rounds is at least .

𝟣, …, 𝗍
𝖥𝗍 =

𝟣, …, 𝗍

Pr (𝖥𝗍) = Pr (
𝗇

⋃
𝗂=𝟣

𝖥𝗂,𝗍) ≤
𝗇

∑
𝗂=𝟣

Pr (𝖥𝗂,𝗍) ≤ 𝗇 (𝟣 −
𝟣
𝖾𝗇 )

𝗍

𝗍 = ⌈𝖾𝗇⌉𝟤 ln 𝗇 ⇒ Pr (𝖥𝗍) ≤ 𝗇 (𝟣 −
𝟣
𝖾𝗇 )

⌈𝖾𝗇⌉𝟤 ln 𝗇

≤ 𝗇 ( 𝟣
𝖾 )

𝟤 ln 𝗇

=
𝗇
𝗇𝟤

=
𝟣
𝗇

⌈𝖾𝗇⌉𝟤 ln 𝗇 𝟣 − 𝟣/𝗇

Contention Resolution

probability that any 
one of    fails 
in rounds  

𝖯𝟣, …, 𝖯𝗇
𝟣, …, 𝗍

union bound Pr (𝖥𝗂,𝗍) ≤ (𝟣 −
𝟣
𝖾𝗇 )

𝗍



• Conclusion. After  rounds all processes have accessed database with 
probability at least . 


• Success probability. 


• For large  probability is very close to 1.

• More rounds will further increase probability of success.


• Simplicity. 

• Very simple and effective protocol.

• Difficult to solve deterministically. 

⌈𝖾𝗇⌉𝟤 ln 𝗇
𝟣 − 𝟣/𝗇

𝗇

Contention Resolution
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• Graphs. Consider undirected, connected graph G = (V,E).

• Cuts. 


• A cut (A,B) is a partition of V into two non-empty disjoint sets A and B.

• The size of a cut (A,B) is the number of edges crossing the cut.

• A minimum cut is a cut of minimum size.

Minimum Cut

A B



• Applications. 

• Network fault tolerance.

• Image segmentation. 

• Parallel computation

• Social network analysis. 

• ...

Minimum Cut



• Which solutions do we know?

Minimum Cut



• Contraction algorithm. 

• Pick edge e = (u,v) uniformly at random.

• Contract e.


• Replace e by single vertex w.

• Preserve edges, updating endpoints of u and v to w. 

• Preserve parallel edges, but remove self-loops.


• Repeat until two vertices a and b left. 

• Return cut (all vertices contracted into a, all vertices contracted into b). 

Minimum Cut

b

a c

d

c

d

{a,b}



b

a c

d

c

d

{a,b}

d

{a,b,c}

cut is ({a,b,c}, {d}) of size 2



• Analysis.

• Consider minimum cut (A,B) with crossing edges F.

• What is the probability that the contraction algorithm returns (A,B)?

Minimum Cut

A BB
F



• Round 1.

• What is the probability that we contract an edge from F in round 1? 


• Each vertex has deg (otherwise smaller cut exists) . 


• . 


• Probability we contract edge from F is .

≥ |𝖥 | ⇒ ∑
𝗏∈𝖵

𝖽𝖾𝗀(𝗏) ≥ |𝖥 |𝗇

∑
𝗏∈𝖵

𝖽𝖾𝗀(𝗏) = 𝟤𝗆 ⇒ 𝗆 =
∑𝗏∈𝖵 𝖽𝖾𝗀(𝗏)

𝟤
≥

|𝖥 |𝗇
𝟤

=
|𝖥 |
𝗆

≤
|𝖥 |

|𝖥 |𝗇/𝟤
=

𝟤
𝗇

Minimum Cut

A BB
F



• Round j+1.


• What is the probability that we contract an edge in round  from , given that 
no edge from  was contracted in rounds ?


•  is graph after  rounds with  nodes and no edges from  was contracted 
in rounds .


• Every cut in  is a cut in  ⇒ at least  edges incident to every node in  


• ⇒  contains at least  edges ⇒ probability is .

𝗃 + 𝟣 𝖥
𝖥 𝟣, …, 𝗃

𝖦′ 𝗃 𝗇 − 𝗃 𝖥
𝟣, …, 𝗃

𝖦′ 𝖦 |𝖥 | 𝖦′ 

𝖦′ 
|𝖥 | (𝗇 − 𝗃)

𝟤
≤

|𝖥 |
𝗆

=
𝟤

𝗇 − 𝗃

Minimum Cut

A BB
F



• Success after all rounds.


• event that an edge from F is not contracted in round j.


• The probability that we return the correct minimum cut is .


• We know:


• .


• .


• Conditional probability definition + algebra .

𝖤𝗃 =

Pr (𝖤𝗇−𝟤 ∩ ⋯ ∩ 𝖤𝟣)

Pr (𝖤𝟣) ≥ 𝟣 −
𝟤
𝗇

Pr (𝖤𝗃+𝟣 ∣ 𝖤𝟣 ∩ ⋯ ∩ 𝖤𝗃) ≥ 𝟣 −
𝟤

𝗇 − 𝗃

⇒ Pr (𝖤𝟣 ∩ ⋯ ∩ 𝖤𝗃+𝟣) ≥
𝟤
𝗇𝟤

Minimum Cut



• Conclusion. 


• We return the correct minimum cut with probability  in polynomial time.


• Probability amplification. 

• Correct solution only with very small probability

• Run contraction algorithm many times and return smallest cut.


• With  runs with independent random choices the probability of failure to 

find minimum cut is .


• Time.

• ϴ(n2 log n) iterations that take Ω(m) time each. 

• More techniques and tricks ⇒ m logO(1) n time solution. [Karger 2000] 

≥ 𝟤/𝗇𝟤

𝗇𝟤 ln 𝗇

≤ (𝟣 −
𝟤
𝗇𝟤 )

𝗇𝟤 ln 𝗇

≤ ( 𝟣
𝖾 )

𝟤 ln 𝗇

=
𝟣
𝗇𝟤

Minimum Cut



• Monte Carlo algorithm. 

• Randomized algorithm. 

• Guarantee on running time, likely to find correct answer. 


• Las Vegas algorithm.

• Randomized algorithm. 

• Guaranteed to find the correct answer, likely to be fast. 

Minimum Cut
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