
Weekplan:
Approximate String Matching

Hjalte Wedel Vildhøj

References and Reading

[1] Efficient string matching with k mismatches, G. M. Landau and U. Vishkin, Theoretical Computer Science,
Volume 43, 1986.

[2] String Matching and Other Products, M. J. Fischer and M. S. Paterson, 1974.

[3] Generalized string matching, K. Abrahamson, SIAM Journal on Computing, Volume 16 Issue 6, 1987.

[4] Faster Algorithms for String Matching with k Mismatches, Amihood Amir, Moshe Lewenstein and Ely Porat,
JACM 2000.

We recommend reading [1] and [4] in detail.

Exercises

1 A faster algorithm for k-mismatches We saw an O(n
p

k log m)-time algorithm for the k-mismatch problem.
Improve the time complexity to O(n

p

k log m). Hint: Consider the definition of frequent symbols.

2 Patterns with wildcards A wildcard ∗ is a special symbol that matches any other symbol from the alphabet
Σ. Show how to solve the k-mismatch problem in O(n|Σ| log m) time when some of the symbols in the pattern P
and the text T are wildcards.

3 Periodic patterns A string x is periodic with period p if x = y y · · · y for some string y of length p. Suppose
the pattern P has period p. Show how to solve the k-mismatch problem in O(np) time.

4 Exact matching with convolutions Give a convolution-based algorithm that finds all exact occurrences of
P in T in O(n log m) time. Hint: Consider the sum

∑m−1
j=0 (T[i + j]− P[j])2

5 Approximate text indexing with one mismatch Design a data structure for a string T of length n that
supports the following approximate pattern query for a string P:

SEARCH(P): Return all positions i in T where T[i, i+|P|−1] and P mismatches in at most one position.

Your data structure should use O(n log n) space and preprocessing time, and queries should be answered in
O(|P|2 polylog n+occ) time where occ denotes the number of occurrences of P in T with at most one mismatch. If
necessary you may assume that T contains no exact matches of P. Hint: Use suffix trees and 2D-range reporting.
Extra challenge: Improve the query complexity to O(|P|polylog n+ occ).

1

6 Nearly dual strings A string is x is dual if x = y y for some other string y . We say that x is k-nearly dual if
x can be made dual by changing at most k symbols in x . Here changing a symbol means replacing it with another
symbol (i.e., deleting or adding symbols are not allowed). Let T be a string of length n.

1. [w] Show how to find all k-nearly dual strings in T in O(n2k) time.

2. Show an O(n)-time algorithm that given a position i in T outputs all dual strings y y where the first copy of
y contains position i. Hint: Consider all possible lengths of y separately.

3. Show how to find all dual strings in T in O(n log n+occ) time, where occ denotes the number of dual strings
in T . Hint: Use your solution from (2) to make a divide-and-conquer algorithm.

4. Generalize your algorithm from (3) to find all k-nearly dual strings in T in O(kn log n+ occ) time, where
occ denotes the number of k-nearly dual strings in T .

2

