(=]
=
=

>
>
>

External memory Il: B-trees
02282 Algorithms for Massive Data Sets

Patrick Hagge Cording

b

f(x+Ax):§ (?TX%;“)(x) 8
i=0 "
DTU Compute

Department of Applied Mathematics and Computer Science

Search trees

e Store a set of integer keys

e B-tree is a classic search tree used in theory and practice

Why bother?
e Searching is used everywhere
e Pointer-based structures incur many cache misses

e Even implicit tree structures can be bad

2 DTU Compute External memory Il: B-trees

=
—
=

M

3.5.2015

Outline

B-trees in external memory

e Static and dynamic

Cache-oblivious B-trees
e Static
e Ordered-file maintenance

e Dynamic

3 DTU Compute

External memory Il: B-trees

=
—
=

M

3.5.2015

B-trees in external memory

e Internal nodes have ©(B) children

e Tree has height O(logg N)

e Search and update requires O(logg N) 10s (see CLRS)

(Image from CLRS)

4 DTU Compute External memory Il: B-trees

=
=
=

M

3.5.2015

Static cache-oblivious B-trees: Layout

e van Emde Boas layout of binary tree

Lh/2)

[h/2]
Bq By,

Alm] o]

e O(N) space
(Image due to Gerth Stglting Brodal)

5 DTU Compute External memory Il: B-trees

)
o |
=

M

3.5.2015

Static cache-oblivious B-trees: Searching

orwnne s

A
J/iTAY

A - N
FAVATAY

/A
/AVAN

NN .
AVAVY/AVAN KMMx

e Yellow substrees have size vB <z < B

e Path will visit < loogg]\f/g = O(logg N) yellow subtrees

e = O(logg N) IOs

(Image due to Gerth Stglting Brodal)

6 DTU Compute External memory Il: B-trees

)
o |
=

M

3.5.2015

Outline

B-trees in external memory

e Static and dynamic

Cache-oblivious B-trees
e Static
e Ordered-file maintenance

e Dynamic

7 DTU Compute

External memory II: B-trees

=
—
=

M

3.5.2015

Problem definition

Store an ordered sequence of N elements (integers) in an array with
constant sized gaps subject to insertions and deletions.

e INSERT(k, p): Insert the key p after the element with key k

e DELETE(k): Delete element with key k

O(N) space and amortized O(@) IOs for INSERT and DELETE.

8 DTU Compute External memory Il: B-trees

=
—
=

M

3.5.2015

Simple solution

® Rewrite entire array for INSERT and DELETE
e Double/half array when full/below threshold
e O(N) space and O(N/B) I0s

9 DTU Compute

External memory Il: B-trees

=
—
=

M

3.5.2015

Data structure

® A node v stores its density D(v) = numberofeements

e Initially, £ — 2d/h < D(v) < 2 + 2d/h

e Threshold range increase with depth

| O(log N) | O(log N) | O(log N) | O(log N) | O(log N) | O(log N) | O(log N) | O(log N) |

10 DTU Compute

External memory II: B-trees

S
e
=

M

3.5.2015

=
—
=

Operations
INSERT:

M

e Redistribute block

e |f block is full

e Find deepest node within threshold
e Evenly redistribute entire subrange
e = All descendants are within range

| O(log N) | O(log N) | O(log N) | O(log N) | O(log N) | O(log N) | O(log N) | O(log N) |

11 DTU Compute External memory Il: B-trees 3.5.2015

]
=

Analysis

M

e Claim: Suppose v has capacity K and has just been redistributed. At least
O(K/log N) elements must be inserted before v's range is redistributed

e Accounting method:

e Pay O(log® N) to insert

e O(log N) is payed for redistributing the leaf

e Each node on path to root gets O(log N) credit

e When internal node with capacity K is redistributed it has at least O(K)
credit

e INSERT requires redistribution of amortized O(log? N) elements

2
= amortized O(%) IOs (because we use scanning)

e Similar analysis for DELETE

12 DTU Compute External memory Il: B-trees 3.5.2015

Outline

B-trees in external memory

e Static and dynamic

Cache-oblivious B-trees
e Static
e Ordered-file maintenance

e Dynamic

13 DTU Compute

External memory II: B-trees

=
—
=

M

3.5.2015

Dynamic cache-oblivious B-trees

e Put elements in ordered-file maintenance data structure

e Static search tree with vEB layout on top

EREEEEERERREREE:
(ITITITITIITIITIIIT]

e Size of array: O(N)
e Size of tree: 2- O(N) — 1= O(N)
e Searching: O(logg N) I0s

14 DTU Compute External memory Il: B-trees

=
—
=

M

3.5.2015

Dynamic cache-oblivious B-trees: Updates
e Search for location
e Update ordered-file maintenance-array

e Propagate changes to tree (post-order)

® Rebuild entire structure if it grows/shrinks too big/small

15 DTU Compute External memory Il: B-trees

)
o |
=

M

3.5.2015

)
o |
=

Dynamic cache-oblivious B-trees: Updates =
e Search for location O(logg N) 10s
e Update ordered-file maintenance-array amortized O(log N 10s
e Propagate changes to tree (post-order) O(log Ny 10s

® Rebuild entire structure if it grows/shrinks too big/small

16 DTU Compute External memory Il: B-trees 3.5.2015

Dynamic cache-oblivious B-trees: Final tweaks

e So far: O(logg N) 10s for search and O(logg N + %) |Os for updates
e Add a layer of indirection!

Dynamic B-tree

EEEEEEE
[T T T T T T] ot marranc

btz anl

| O(log N) || O(log N) ” O(log N) ” O(log N) ” O(log N) ” O(log N) ” O(log N) " O(log N) |

e Changes to tree only occurs for every 2(log N') updates = amortized
O(log N + &%) = O(logz N) 10s for updates

17 DTU Compute

External memory II: B-trees

=
—
=

M

3.5.2015

Outline

B-trees in external memory

e Static and dynamic

Cache-oblivious B-trees

e Static

e Ordered-file maintenance

e Dynamic

18 DTU Compute

=
—
=

M

O(logg N) 10s

O(logg N) 10s
amortized O(@) 10s

O(logg N) I0s for search and
amortized O(logz N) |0s for updates

External memory Il: B-trees 3.5.2015

	Ordered-file maintenance

