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Search trees

e Store a set of integer keys

e B-tree is a classic search tree used in theory and practice

Why bother?
e Searching is used everywhere
e Pointer-based structures incur many cache misses

e Even implicit tree structures can be bad
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Outline

B-trees in external memory

e Static and dynamic

Cache-oblivious B-trees
e Static
e Ordered-file maintenance

e Dynamic
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B-trees in external memory

e Internal nodes have ©(B) children

e Tree has height O(logg N)

e Search and update requires O(logg N) 10s (see CLRS)

(Image from CLRS)
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Static cache-oblivious B-trees: Layout

e van Emde Boas layout of binary tree

Lh/2)
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e O(N) space
(Image due to Gerth Stglting Brodal)
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Static cache-oblivious B-trees: Searching
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e Yellow substrees have size vB <z < B

e Path will visit < loogg]\f/g = O(logg N) yellow subtrees

e = O(logg N) IOs

(Image due to Gerth Stglting Brodal)
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Outline

B-trees in external memory

e Static and dynamic

Cache-oblivious B-trees
e Static
e Ordered-file maintenance

e Dynamic
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Problem definition

Store an ordered sequence of N elements (integers) in an array with
constant sized gaps subject to insertions and deletions.

e INSERT(k, p): Insert the key p after the element with key k

e DELETE(k): Delete element with key k

O(N) space and amortized O(@) IOs for INSERT and DELETE.
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Simple solution

® Rewrite entire array for INSERT and DELETE
e Double/half array when full/below threshold
e O(N) space and O(N/B) I0s
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Data structure

® A node v stores its density D(v) = numberofeements

e Initially, £ — 2d/h < D(v) < 2 + 2d/h

e Threshold range increase with depth

| O(log N) | O(log N) | O(log N) | O(log N) | O(log N) | O(log N) | O(log N) | O(log N) |

10 DTU Compute

External memory II: B-trees

S
e
=

M

3.5.2015



=
—
=

Operations
INSERT:

M

e Redistribute block

e |f block is full

e Find deepest node within threshold
e Evenly redistribute entire subrange
e = All descendants are within range

| O(log N) | O(log N) | O(log N) | O(log N) | O(log N) | O(log N) | O(log N) | O(log N) |
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Analysis

M

e Claim: Suppose v has capacity K and has just been redistributed. At least
O(K/log N) elements must be inserted before v's range is redistributed

e Accounting method:

e Pay O(log® N) to insert

e O(log N) is payed for redistributing the leaf

e Each node on path to root gets O(log N) credit

e When internal node with capacity K is redistributed it has at least O(K)
credit

e INSERT requires redistribution of amortized O(log? N) elements

2
= amortized O(%) IOs (because we use scanning)

e Similar analysis for DELETE
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Outline

B-trees in external memory

e Static and dynamic

Cache-oblivious B-trees
e Static
e Ordered-file maintenance

e Dynamic
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Dynamic cache-oblivious B-trees

e Put elements in ordered-file maintenance data structure

e Static search tree with vEB layout on top

EREEEEERERREREE:
(ITITITITIITIITIIIT]

e Size of array: O(N)
e Size of tree: 2- O(N) — 1= O(N)
e Searching: O(logg N) I0s
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Dynamic cache-oblivious B-trees: Updates
e Search for location
e Update ordered-file maintenance-array

e Propagate changes to tree (post-order)

® Rebuild entire structure if it grows/shrinks too big/small
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Dynamic cache-oblivious B-trees: Updates =
e Search for location O(logg N) 10s
e Update ordered-file maintenance-array amortized O(log N 10s
e Propagate changes to tree (post-order) O(log Ny 10s

® Rebuild entire structure if it grows/shrinks too big/small
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Dynamic cache-oblivious B-trees: Final tweaks

e So far: O(logg N) 10s for search and O(logg N + %) |Os for updates
e Add a layer of indirection!

Dynamic B-tree

EEEEEEE
[T T T T T T ] ot marranc

btz anl

| O(log N) || O(log N) ” O(log N) ” O(log N) ” O(log N) ” O(log N) ” O(log N) " O(log N) |

e Changes to tree only occurs for every 2(log N') updates = amortized
O(log N + &%) = O(logz N) 10s for updates
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Outline

B-trees in external memory

e Static and dynamic

Cache-oblivious B-trees

e Static

e Ordered-file maintenance

e Dynamic
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O(logg N) 10s

O(logg N) 10s
amortized O(@) 10s

O(logg N) I0s for search and
amortized O(logz N) |0s for updates
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	Ordered-file maintenance

