Predecessor

* Predecessor Problem
» van Emde Boas
* Tries

Philip Bille

Predecessor

* Predecessor Problem

Predecessors

+ Predecessor problem. Maintain aset S ¢ U = {0, ..., u-1} supporting
+ predecessor(x): return the largest element in S that is < x.
+ sucessor(x): return the smallest element in S that is > x.
« insert(x): set S=S u {x}
+ delete(x): set S=S - {x}

predecessor(x) X successor(x)

u-1

Predecessors

* Applications.
+ Simplest version of nearest neighbor problem.
+ Several applications in other algorithms and data structures.

+ Probably most practically solved problem in the world: Out all computational
resources globally a huge fraction is used to solve the predecessor problem!

Predecessors

» Routing IP-Packets
» Where should we forward the packet to?
» To address matching the longest prefix of 192.110.144.123.
» Equivalent to predecessor problem.

» Best practical solutions based on advanced predecessor data structures
[Degermark, Brodnik, Carlsson, Pink 1997]

192.110.142.255

192.110.144.

—

7 192.110.144.120

192.150.111.000

Predecessors

+ Which solutions do we know?
* Linked list
» Balanced binary search trees.
* Bitvectors

Predecessor

» van Emde Boas

van Emde Boas

+ Goal. Static predecessor with O(log log u) query time.
+ Solution in 5 steps.

- Bitvector. Very slow

« Two-level bitvector. Slow.

» van Emde Boas [Boas 1975]. Fast.

Solution 1: Bitvector

[° 0 e o o ° oo |
0 u-1

+ Data structure. Bitvector.
» Predecessor(x): Walk left.
+ Time. O(u)

Solution 2: Two-Level Bitvector

ut”2

[e o o]

_— 7 N T

[0] [o0 o o |] [e 0
u1/2 u1/2 u1/2 u1/2

« Data structure. Top bitvector + u'2 bottom bitvectors.
» Predecessor(x): Walk left in bottom + walk left in top + walk left bottom.

« Time. O(U'2 + u2+ u"2) = O(u'?)

« To find indices in top and bottom write x = hi(x) - u'2 + lo(w)
+ Index in top is hi(x) and index in bottom is lo(x).

Solution 3: Two-Level Bitvector with less Walking

ul2

[e o o]

_— 7 N T——

I [X | | pe o 9] | | [¢ ° 9 |

ul”2 ul2 ul2 ul2

+ Data structure. Solution 2 with min and max for each bottom structure.
» Predecessor(x):
+ If hi(x) in top and lo(x) = min in bottom[lo(x)] walk left in bottom.

« if hi(x) in top and lo(x) < min or hi(x) not in top walk left in top. Return max at first
non-empty position in top.

» We either walk in bottom or top.

+ Time. O(u'?)

+ Observation.
* Query is walking left in one vector of size u'2 + O(1) extra work.
» Why not walk using a predecessor data structure?

Solution 4: Two-Level Bitvector within Top and Bottom

ﬁm\m\m

_— 7 N
I S

O s e e Sy
AN || I N | | |
« Data structure. Apply solution 3 to top and bottom structures of solution 3.
« Walking left in vector of size u'2 now takes O((u'/?)"2) = O(u"4) time.
« Each level adds O(1) extra work.
« Time. O(u'4)

* Why not do this recursively?

Solution 5: van Emde Boas

[m =]
— N—

(S S oS S =)
Fes E=—3 == =
—_— N —_— N —_— N —_— N
i e =l e o e o e = o e e o e B o
+ Data structure. Apply recursively until size of vectors is constant.
« Time. T(u) = T3 + O(1) = O(log log u)
» Space. O(u)

» Combined with perfect hashing we can reduce it to O(n) [Mehlhorn and Naher
1990].

van Emde Boas

« Theorem. We can solve the static predecessor problem in
* O(n) space.
* O(log log u) time.

« Can also be made dynamic.

Predecessor

* Tries

Tries

+ Goal. Static predecessor with O(n) space and O(log log u) query time.
+ Equivalent to van Emde Boas but different perspective. Simpler?
+ Solution in 3 steps.

« Trie. Slow and too much space.

« X-fast trie. Fast but too much space.

 Y-fast trie. Fast and little space.

Tries

0 1 2 3 4 5 6 7 8 9 10 M 12 13 14 15
S =1{0,2,8, 11, 14} = {00002, 00102, 1000z, 10112, 11102}

« Trie. Tree T of prefixes of binary representation of keys in S.
» Depth of Tis log u
» Number of nodes in T is O(n log u).

Solution 1: Top-down Traversal

0o 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
S=1{0,2,8, 11, 14} = {00002, 00102, 10002, 10112, 1110}

+ Data structure.
+ T as binary tree with min and max for each node + keys ordered in a linked list.
« Predecessor(x): Top-down traversal to find the longest common prefix of x with T.
« x branches of T to right = Predecessor(x) is max of sibling branch.

+ x branches of T to left = Successor(x) is min of sibling branch. Use linked list to
get predecessor(x).

+ Time. O(log u)
+ Space. O(n log u)

Solution 2: X-Fast Trie

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
$=1{0,2,8, 11, 14} = {00002, 0010z, 10002, 10112, 11102}

+ Data structure.

+ For each level store a dictionary of prefixes of keys + solution 1.

+ Example. d1 = {0,1}, d2 = {00, 10, 11}, d3 = {000, 001, 100, 101, 111}, d4 =S
» Space. O(n log u)

Solution 2: X-Fast Trie

o 1 2 38 4 5 6 7 8 9 10 11 12 13 14 15
$=1{0, 2,8, 11, 14} = {00002, 00102, 10002, 10112, 11102}

» Predecessor(x): Binary search over levels to find longest matching prefix with x.
« Example. Predecessor(9 = 10012):

+ 102 in d2 exists = continue in bottom 1/2 of tree.

+ 1002 in d3 exists = continue in bottom 1/4 of tree.

» 10012 in d4 does not exist = 100z is longest prefix.
+ Time. O(log log u)

Solution 2: X-Fast Trie

0 1 2 3 4 5 6 7 8 9 10 M 12 13 14 15
S =1{0,2,8, 11, 14} = {00002, 00102, 1000z, 10112, 11102}

» Theorem. We can solve the static predecessor problem in
* O(log log u) time
* O(n log u) space.

» How do we get linear space?

Solution 3: Y-Fast Trie

x-fast trie

- I 4 D

I 1] 1] | 1 I |
0 I TT1 ' ' LLLL

« Bucketing.

« Partition S into O(n / log u) groups of log u consecutive keys.

- Compute S’ = set of split keys between groups. |S’| = O(n/log u)
« Data structure. x-fast trie over S’ + balanced binary search trees for each group.
« Space.

« x-fast trie: O(|S’| log u) = O(n/ log u - log u) = O(n).

« Balanced binary search trees: O(n).

+ = O(n) in total.

Solution 3: Y-Fast Trie

x-fast trie

- I O D

I I [l | I Y I
' 1 Il T T w1

» Predecessor(x):

» Compute s = predecessor(x) in x-fast trie.

+ Compute predecessor(x) in BBST to the left or right of s.
» Time.

+ x-fast trie: O(log log u)

+ balanced binary search tree: O(log (group size)) = O(log log u).

+ = Of(log log u) in total.

Solution 3: Y-Fast Trie

o 1 2 38 4 5 6 7 8 9 10 11 12 13 14 15
$=1{0, 2,8, 11, 14} = {00002, 00102, 10002, 10112, 11102}

« Theorem. We can solve the static predecessor problem in
* O(log log u) time
* O(n) space.

Y-Fast Tries

» Theorem. We can solve the static predecessor problem in
» O(n) space.
» O(log log u) time.
» What about updates?
» Theorem. We can solve the dynamic predecessor problem in
» O(n) space
» O(log log u) expected time for predecessor and updates.

\

From dynamic hashing

Predecessor

» Predecessor Problem
» van Emde Boas
* Tries

