K-center

The k-center problem

 Input. An integer k and a complete, undirected graph G=(V,E), with distance d(i,j)
between each pair of vertices i,j € V.

+ dis a metric:
« dist(i,i) =0
« dist(i,j) = dist(j,i)
- dist(i,l) < dist(i,j) + dist(j,l)

- Goal. Choose aset S c V, |S| =k, of k centers so as to minimize the maximum
distance of a vertex to its closest center.

S = argming.ysix Max.y dist(i,S)

- Covering radius. Maximum distance of a vertex to its closest center.

k-center: Greedy algorithm

- Greedy algorithm.
* Pick arbitrary i in V.
« Set S = {i}
- while [S| < k do
* Find vertex j farthest away from any cluster center in S
- Addjto S

« Greedy is a 2-approximation algorithm:
* polynomial time v
+ valid solution
- factor 2

K-center: analysis greedy algorithm

« r* optimal radius.
- Show all vertices within distance 2r* from a center.
- Consider optimal clusters. 2 cases.

- Algorithm picked one center in each optimal
cluster

- distance from any vertex to its closest center
< 2r* (triangle inequality)

- Some optimal cluster does not have a center.
« Some cluster have more than one center.
« distance between these two centers < 2r~.

« when second center in same cluster picked it
was the vertex farthest away from any center.

« distance from any vertex to its closest center
at most 2r”.

Bottleneck algorithm

« Assume we know the optimum covering radius r.

- Example: k= 3. r = 4.

Bottleneck algorithm

- Assume we know the optimum covering radius .
- Example: k= 3. r =4.
« Analysis.
« Covering radius is at most 2.
« Algorithm picks more than k centers => the optimum covering radius is > .

- If algorithm pick more than k centers then it picked more than one in some
OPT cluster.

 If r* < r we can pick at most one in each optimum cluster.

« Can “guess” optimal covering radius (only a polynomial number of possible values).

K-center: Inapproximabllity

« There is no a-approximation algorithm for the k-center problem for a < 2 unless
P=NP.

« Proof. Reduction from dominating set.

- Dominating set. Given G=(V,E) and k. Is there a (dominating) set S ¢ V of size k, such
that each vertex is either in S or adjacent to a vertex in S?

« Given instance of the dominating set problem construct instance of k-center
problem:

« Complete graph G’ on V.

All edges from E has weight 1, all new edges have weight 2.

Radius in k-center instance 1 or 2.

G has an dominating set of size k <=> opt solution to the k-center problem has
radius 1.

Use a-approximation algorithm A:

« opt =1 => A returns solution with radius at most a < 2.
« opt = 2 => A returns solution with radius 2.
« Can use A to distinguish between the 2 cases.

Set cover

Set cover problem

« Set U of n elements.

« Subsets of U: S4,...,Sm.

- Each set Si has a weight wi> 0.

« Set cover. A collection of subsets C whose union is equal to U.

« Goal. find set cover of minimum weight.

Set Cover

Set Cover

Set Cover

Set Cover

Set Cover

Set Cover: Greedy algorithm

Wy

SNk 15 1/4 1/3 1/4 1/3 13 12 15

S 81 82 S 4

N
1’¢‘ T

Set Cover: Greedy algorithm

Wy

SNk 15 1/4 1/3 1/4 1/3 13 12 15

S 81 82 S 4

N
1’¢‘ !

Set Cover: Greedy algorithm

|SZﬂR| 1 1/3 1/3 1/4

D
1’¢‘ !

1/2

Set Cover: Greedy algorithm

|SZﬂR| 1 1/3 1/3 1/4

Sy

»/; =</

Set Cover: Greedy algorithm

|SZﬂR| - 1 1/2

Sy

»/; =</

Set Cover: Greedy algorithm

|SZﬂR| - 1 1/2

Sy

»/; =</

Set Cover: Greedy algorithm

|SZﬂR| - 1 1/2

Sy

»/; =</

Set Cover: Greedy algorithm

Sy

D
K e

Set cover: greedy algorithm

Greedy-set-cover
SetR:=Uand C =0
whileR z J

wy
Select the set Si minimizing

Si N R

Delete the elements from S; from R.
Add S; to C.

endwhile

Return C.

« Greedy-set-cover is a n O(log n)-approximation algorithm:
« polynomial time v
- valid solution

- factor O(log n)

Set Cover: Greedy algorithm - tight example

Cost 1/n 1/(n-D)1/(N-2) oo 1 14X

Q9000000

Set Cover: Greedy algorithm - tight example

Cost 1/n 1/(n-D)1/(N-2) oo 1 14X

Q9000000

OPT = 1+x

Set Cover: Greedy algorithm - tight example

ws
5, NR| 1/n 1/(n-1)1/(n-2) 1 ((g)(n-2)
Cost 1n 1(n-D1(n-2) ... 1 1+x

090000000

OPT = 1+x
Greedy = 1/n + 1/(n-1) + 1/(n-2) = Hy

