Hashing

- Dictionaries

* Chained Hashing

* Universal Hashing

- Static Dictionaries and Perfect Hashing

Philip Bille

Hashing

+ Dictionaries

Dictionaries

+ Dictionary problem. Maintain a set S ¢ U = {0, ..., u-1} supporting
* lookup(x): return true if x € S and false otherwise.
* insert(x): set S =S u {x}
« delete(x): set S =S - {x}

+ Think universe size u = 264 or 2%2and |S]| « u.

* Satellite information. We may also have associated satellite information for each key.

» Goal. A compact data structure (linear space) with fast operations (constant time).

Dictionaries

» Applications.
+ Maintain a dictionary (!)

» Key component in many data structures and algorithms. (Examples in exercises
and later lectures).

Dictionaries

» Which solutions do we know?

Hashing

* Chained Hashing

Chained Hashing

+ Simplifying assumption. |S| < N at all times and we can use space O(N).
+ Chained hashing [Dumey 1956].

+ Pick some crazy, chaotic, random function h (the hash function) mapping U to {0,
.oy N-1}

« Initialize an array A[O, ..., N-1].
- A[i] stores a linked list containing the keys in S whose hash value is i.

Chained Hashing

* Example.
- U={0, .., 99}
- S={1,16, 41, 54, 66, 96}
» h(x) =x mod 10

Satellite info

(] =]]

1]

R CINC]

e

|

Chained Hashing

» Operations. How can we support lookup, insert, and delete?

+ Lookup(x): Compute h(x). Scan through list for h(x). Return true if x is in list and
false otherwise.

« Insert(x): Compute h(x). Scan through list for h(x). If x is in list do nothing.
Otherwise, add x to the front of list.

* Delete(x): Compute h(x). Scan through list for h(x). If x is in list remove it.
Otherwise, do nothing.

» Time. O(1 + length of linked list for h(x))

Chained Hashing

+ Hash functions. A crazy, chaotic hash function (like h(x) = x mod 10) sounds good,
but there is a big problem.

« For any fixed choice of h, we can find a set whose elements all map to the same
slot.

- = We end up with a single linked list.

+ How can we overcome this?

» Use randomness.
« Assume the input set is random.

* Choose the hash function at random.

Chained Hashing

+ Chained hashing for random hash functions.

» Assumption 1. h: U = {0, ..., N-1} is chosen uniformly at random from the set of
all functions from U to {0, ..., N-1}.

» Assumption 2. h can be evaluated in constant time.

« What is the expected time for an operation OP(x), where OP = {lookup, insert,
delete}?

Chained Hashing

Time for OP(z) = O (1 + E [length of linked list for h(z)])
=01+ E[{yeS|h(y) =h(x)}])

_ 1 if h(y) = h(z)
O<1+E UEZS{O ifh(y);éh(z):|>
1 if h(y) = h(z)
=0
(1 +§E {0 if h(y) # h,(j[;):|>
=0(1+ Z Pr[h(z) = h(y)])
yeSs

=0(1+1+ > Prlh(z) =h(y))

yeS\{z} \

=0(1+1+ > 1N)
yes\{z}
—O(1+1+ N(1/N)) = O(1)

N2 choices for pair (h(x), h(y)),
N of which cause collision

Chained Hashing

» Theorem. With a random hash function (under assumptions 1 + 2) we can solve the
dictionary problem in

» O(N) space.
» O(1) expected time per operation (lookup, insert, delete).

* Expectation is over the choice of hash function.
* Independent of the input set.

Random Hash Functions

» Random hash functions. Can we efficiently compute and store a random function?

» We need u log N bits to store an arbitrary function from {0,..., u-1} to {0,..., N-1}
(specify for each element x in U the value h(x)).

» We need a lot of random bits to generate the function.
« We need a lot of time to generate the function.

Random Hash Functions

» Do we need a truly random hash function?
» When did we use the fact that h was random in our analysis?

Time for OP(z) = O (1 + E [length of linked list for h(z)])
=01+ E[{yeS]|h(y)=h@)})

B 1 if h(y) = h(x)
-9 (”E Zs{o it h(y) #h(m)D
-~ 1 if h(y) = h(z)
=0 (1 M ZE {0 if h(y) # h(]:)})

yeS
=01+ Z Pr[h(z) = h(y)])

yes
=0(1+1+ > Prlh(z) = h(y)])
yes\{x} S~
—01+1+ Z 1/N) For all z # y, Pr[h(z) = h(y)] < 1/N
yeS\{z}

=0(1+1+ N(1/N)) = O(1)

Random Hash Functions

» We do not need a truly random hash function!
» We only need: For all x # y, Pr[h(x) = h(y)] < 1/N
+ Captured in definition of universal hashing.

Hashing

* Universal Hashing

Universal Hashing

+ Universel hashing [Carter and Wegman 1979].
+ Let H be a set of functions mapping U to {0, ..., N-1}.
» His universal if for any xzy in U and h chosen uniformly at random in H,
Pr(h(x) = h(y)] = 1/N

* Universal hashing and chaining.
« If we can find family of universal hash functions such that
» we can store it in small space
+ we can evaluate it in constant time
« = efficient chained hashing without special assumptions.

Universal Hashing

+ Positional number systems. For integers x and p, the base-p representation of x is x
written in base p.

+ Example.
+ (10)10=(1010)2 (1-23+0-22+1-2'+ 0-20)
+ (107)10=(212)7 2-72+1-7" +2-79)

Universal Hashing

+ Hash function. Given a prime N < p < 2N and a = (a1a2...ar)p, define
ha(x = (X1X2...Xr)p) = @1X1 + @2X2 + ... + axr mod p
+ Example.
e p=7
« a=(107)10=(212)7
* X =(214)10 = (424)7
* hax)=2-4+1-2+2-4mod7=18mod 7 =4

* Universal family.
+ H=¢{ha|a=(a1az...a)p € {0, ..., p-1}}
* Choose random hash function from H ~ choose random a.
* His universal (next slides).
« O(1) time evaluation.
+ O(1) space.
« Fast construction (find suitable prime).

Universal Hashing

+ Lemma. Let p be a prime. For any a € {1, ..., p-1} there exists a unique inverse a™
suchthata™ - a=1 mod p. (Z; is a field)

* Example.p=7

al1(2|3|4|5]|6
a-‘l
a |
a'| 1

Universal Hashing
+ Goal. For random a = (a1az...ar)p, show that if X = (X1X2...Xr)p # Y = (Y1y2...Yr)p then
Pr{ha(X) = ha(y)] < 1/N

+ (X1X2...X)p 2 Y = (Y1y2...yr)p = Xi # yi for some i. Assume wlog. that x # yr.

Pr[ha((l'l .- -]:r)p) = ha((?/l ce 71/1“)17)]

=Prlaizy + -+ arzy = ar1ys + -+ + a,y, mod p)

=Prla, 2z, — @Yy = a1y1 — @171 + -+ + Qr_1Yr—1 — Gr—1T,—1 Mod D] gyistence of inverses
=Prla.(z, —yr) =a1(y1 —@1) + -+ + ar_1(yr—1 — Tr—1) mod p]

=Pr[ar(z, — y)(@r —y) " = (a1lyr — 21) + - + @1 (Yro1 — zr-1)) (@ — y,) ' mod p)

1 1
=Pr [ar =(a1(y1 — 1)+ + a1 (Yro1 — 1)) (@ —yr) " mOdP} =-<

p N

p choices for ar, exactly one causes a collision by uniqueness of inverses.

Universal Hashing

+ Lemma. H is universal with O(1) time evaluation and O(1) space.

» Theorem. We can solve the dictionary problem (without special assumptions) in:
» O(N) space.

« O(1) expected time per operation (lookup, insert, delete).

Other Universal Families

» Forprimep>0,aef{l,.,p-1},be{0, ..., p-1}

ha,p(x) = (az + b mod p) mod N
H={hqp|aec{l,....,p—1},b€{0,...,p—1}}

+ Hash function from k-bit numbers to I-bit numbers. a is an odd k-bit integer.

| most significant bits of the k least significant bits of ax
ha(z) = (az mod 2¥) > (k — 1) ~
H = {h, | a is an odd integer in {1,...,2¥ — 1}}

Hashing

- Static Dictionaries and Perfect Hashing

Static Dictionaries and Perfect Hashing

« Static dictionary problem. Given a set S ¢ U = {0,..,u-1} of size N for preprocessing
support the following operation

« lookup(x): return true if x € S and false otherwise.

* As the dictionary problem with no updates (insert and deletes).
+ Set given in advance.

Static Dictionaries and Perfect Hashing

+ Dynamic solution. Use chained hashing with a universal hash function as before =
solution with O(N) space and O(1) expected time per lookup.

+ Can we do better?

« Perfect Hashing. A perfect hash function for S is a collision-free hash function on S.

* Perfect hash function in O(N) space and O(1) evaluation time = solution with
O(N) space and O(1) worst-case lookup time. (Why?)

* Do perfect hash functions with O(N) space and O(1) evaluation time exist for any
set S?

Static Dictionaries and Perfect Hashing

+ Goal. Perfect hashing in linear space and constant worst-case time.
+ Solution in 3 steps.

« Solution 1. Collision-free but with too much space.

- Solution 2. Many collisions but linear space.

« Solution 3: FKS scheme [Fredman, Komlds, Szemerédi 1984]. Two-level solution.
Combines solution 1 and 2.

* At level 1 use solution with lots of collisions and linear space.
* Resolve collisions at level 1 with collision-free solution at level 2.

* lookup(x): look-up in level 1 to find the correct level 2 dictionary. Lookup in
level 2 dictionary.

Static Dictionaries and Perfect Hashing

+ Solution 1. Collision-free but with too much space.

+ Use a universal hash function to map into an array of size N2. What is the expected
total number of collisions in the array?

- _ 1 if h(y) = h(zx)
El[#-collisions] = E Z {0 it h(y) £ h(.’L‘):|

z,y€S,x#y
1 if h(y) = h(z)
= E
zyyg@ﬂ/ {O if h(y) # h(z)}
2
= Z Prh(z) = h(y)] = @[)% < N7 : % =1/2
z,yE€S,x#yY P -

#distinct pairs Universal hashing into N2 range

+ With probability 1/2 we get perfect hashing function. If not perfect try again.
+ = Expected number of trials before we get a perfect hash function is O(1).

+ = For a static set S we can support lookups in O(1) worst-case time using O(N?)
space.

Static Dictionaries and Perfect Hashing

+ Solution 2. Many collisions but linear space.

« As solution 1 but with array of size N. What is the expected total number of
collisions in the array?

El[#collisions] = E

1 if h(y) = h(z)
Ivez?:z#q {0 if h(y) # }l(ZI;):|

= 1 if h(y) = h(x)
) ’vyg‘-ﬂf#yE {0 if h(y) # (x)}

h
= Z Pr{h(z) = h(y)] = (

z,y€S,x#y

Static Dictionaries and Perfect Hashing

+ Solution 3. Two-level solution.
- At level 1 use solution with lots of collisions and linear space.
+ Resolve each collisions at level 1 with collision-free solution at level 2.
« lookup(x): look-up in level 1 to find the correct level 2 dictionary. Lookup in level

2 dictionary.
« Example. —
0
+ S={1,16, 41, 54, 66, 96} —
* Level 1 collision sets: ;ﬁa -
+ S1={1, 41}, N
+ Sa= {54}, 4 :_,
+ Sg={16, 66, 96} 5
- Level 2 hash info stored with subtable. & ﬁal [16 l l 96 l l l 66 l l
* (size of table, multiplier a, prime p) 7| |
+ Time. O(1) 8
* Space? L]

Static Dictionaries and Perfect Hashing

» Space. What is the the total size of level 1 and level 2 hash tables?

.-
space = O | N + Z 1S;)? i EINEIN
ic{0,...,N—1} -
3
#collisions = O(N) S E
5
_ s [[16 9 66
#collisions = Z <|i1‘> 7] ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
i€{0,...,N—1} 8
-
For any integer a, a® = a +2(%)
— \

space = O <N+ Zijlsilz’) =0 <N+ Z (‘Si‘ +2<|52i|>>>

—0 <N+Z|S¢|+QZ (‘g“)) — O(N + N +2N) = O(N)

Static Dictionaries and Perfect Hashing

+ FKS scheme.
» O(N) space and O(N) expected preprocessing time.
« Lookups with two evaluations of a universal hash function.

* Theorem. We can solve the static dictionary problem for a set S of size N in:
* O(N) space and O(N) expected preprocessing time.
* O(1) worst-case time per lookup.

» Multilevel data structures.

» FKS is example of multilevel data structure technique. Combine different
solutions for same problem to get an improved solution.

Hashing

- Dictionaries

* Chained Hashing

+ Universal Hashing

- Static Dictionaries and Perfect Hashing

