
Weekplan: Grammar Compression and Random Access

Philip Bille

References and Reading

[1] Random Access to Grammar-Compressed Strings and Trees, P. Bille, G. M. Landau, R. Raman, K. Sadakane,
S. Rao Satti, O. Weimann, SICOMP, 2015

[2] Perfect hashing for strings: Formalization and algorithms, M. Farach, S. Muthukrishnan, CPM 2005.

We recommend reading [1] in detail and browsing the section on weighted ancestors in [2].

Exercises

1 Re-Pair Compression

1.1 [w] Run the Re-Pair compression algorithm on the string ababababcbccccddcabababaaa

1.2 [w] As described Re-Pair does not produce a straight-line program. Show how to modify the output to get a
straight-line program.

2 Re-Pair Speed Let S be a string of length N . Solve the following exercises.

2.1 [w] Give a straightforward algorithm that implements the Re-Pair algorithm in O(N2) time.

2.2 Show how to implement Re-Pair in O(N) time. Hint: dynamically maintain frequencies of occurrences of
pairs.

3 Grammar Compression Rate Suppose you are given a string S of size N . What is the best possible grammar
compression size?

4 LZ78 and Grammar Compression Let T be a LZ78 trie representing a string S of length N . Show how to
convert T into a grammar of size O(n) representing the string S.

5 Grammars and Heavy-Paths Consider the following grammar G.

X1 = ab
X2 = X1a
X3 = aX2

X4 = X2X6

X5 = ca
X6 = X5a
X7 = X3X4

Solve the following exercises.

5.1 [w] Draw the parse tree for G.

5.2 Draw a heavy path decomposition for G. If the children have the same size, pick the left child as heavy.

5.3 Draw the heavy path suffix tree for G.

1



6 Weighted Ancestor Let T be tree with n nodes. Each edge is assigned a weight and the total cumulative size
of all weights is at most N . We want a data structure that supports the following operation on T . Given a node v
and an integer x define the following operation:

• WA(v, x): return the closest ancestor of v of distance ≥ x .

Solve the following exercises.

6.1 [w] Give a simple data structure that supports WA queries in O(n2) space and O(log log N) time.

The level ancestor problem is to preprocess a tree into a data structure supporting level ancestor queries, that is,
given a node a node v and an integer k, return the kth ancestor of v. Assume in the following that you have a
linear space solution that support queries in constant time.

6.2 Give a data structure that supports WA queries in O(n) space and O(log n) time.

6.3 Give a data structure that supports WA queries O(n) space and O(log log n + log log N) time. Hint: heavy
path decomposition on T .

7 Biased Search Let S be a set of integers s1 ≤ · · · ≤ sn from a universe [0, .., N − 1]. For simplicity add s0 = 0
and sn+1 = N − 1 to S. Let I(x) denote the interval successor(x)− predecessor(x). Our goal is to develop a simple
comparison-based binary tree data structure that supports predecessor(x) query in time O

�

log N
I(x)

�

. Hence, the
query time becomes faster as the interval size I(x) increases.

Consider the intervals [s0, s1], [s1, s2], . . . , [sn, sn+1]. The interval-biased search tree is a binary tree that stores
an interval at each node. The tree is described recursively as follows.

• Let m be such that (sn+1 − s0)/2 ∈ [sm, sm+1]. The root of the tree stores [sm, sm+1].

• The left child of the root is the interval-biased search tree storing the intervals [s0, s1], . . . , [sm−1, sm] and the
right child is the interval-biased search tree storing the intervals [sm+1, sm+2], . . . , [sn, sn+1].

Solve the following exercises.

7.1 Argue that any interval of length ` such that N/2 j+1 ≤ ` ≤ N/2 j must be stored in a node of depth at most
j.

7.2 Use the interval-biased search tree to support predecessor(x) queries in time O
�

log N
I(x)

�

.

2


