Weekplan: Range Reporting

Philip Bille

References and Reading

- [1] Scribe notes from MIT.
- [2] Computational Geometry: Algorithms and Applications, M. de Berg, O. Cheong, M. van Kreveld and M. Overmars,
- [3] Fractional cascading: I. A data structuring technique, B. Chazelle and L. Guibas, Algoritmica, 1986
- [4] Analysis of range searches in quad trees, J. L. Bentley and D. F. Stanat, Inf. Process. Lett., 1975

We recommend reading [1] in detail. [3] and [4] provide background on range trees and *k*D trees.

Exercises

1 [w] **2D Range Tree Example** Construct a 2D range tree for the set of points

$$P = \{(1,3), (3,8), (4,1), (7,5), (6,6), (9,6), (15,4), (20,17)\}$$

Draw all 1D range trees used in the construction. Simulate a report(2, 2, 10, 10) query and show all queries to 1D range trees.

2 Preprocessing for 2D Range Trees Given a fast algorithm that constructs a 2D range tree from a set $P \subseteq \mathscr{R}^2$ of *n* points.

3 Query Bounds for 2D Range Trees A friend suggest that the $O(\log^2 n)$ analysis of reporting queries in 2D range trees is not tight. Specifically, the query time for the 1D range tree is $O(\log m)$, where *m* is the number of points stored in the 1D range tree. The 1D range trees over *y*-coordinate store different size subsets of *P* and hence the total query time is in fact asymptotically faster than $O(\log^2 n)$. Clarify the analysis. Is your friend correct?

4 [*w*] **2D Range Tree with Fractional Cascading Example** Convert the above example for 2D range tree to use fractional cascading. Simulate a report(2, 2, 10, 10) query and show how to follow predecessor pointers.

5 k**D** Tree Analysis Let *T* be a kD tree for a set of *n* points *P*. Consider a query for a range *R*. We want to bound the number of regions in *T* intersected by *R* to get a bound the query time for *R*. The number of regions intersected by any rectangle is at most 4 times the number of regions intersected by any vertical or horizontal line (why?). We bound the number of region intersected by a vertical in the following exercises and use that to prove the bound on the query time. Solve the following exercises.

5.1 Let Q(n) denote the number of regions intersected by a vertical line in a *k*D tree for *n* points. Assume that the first split in *k*D tree is on the *x*-axis. Show that Q(n) satisfies the following recurrence.

$$Q(n) = \begin{cases} 2Q(n/4) + O(1) & n > 1\\ O(1) & n = 0 \end{cases}$$

- **5.2** Show that $Q(n) = O(\sqrt{n})$. *Hint:* draw recursion tree.
- **5.3** Conclude that the query time for a *k*D tree is $O(\sqrt{n} + \text{occ})$.
- **5.4** Show that for some points set *P* of size *n* and some range *R*, the regions of the *k*D tree intersects with *R* in $\Omega(\sqrt{n})$ regions. Conclude that the upper bound analysis is tight up to constant factors.

6 Interval Trees Let $I = [l_1, r_1], ..., [l_n, r_n]$ be a set *n* of intervals. Give an efficient data structure that supports the following operation.

• intersect(*x*): return the set of intervals that contain the point *x*.

Hint: Start with a complete binary tree over the endpoints.

7 Skyline Range Reporting Let $P \subseteq \Re^2$ be a set of *n* points. Give an efficient data structure that supports the following operation.

- report₃(x_1, x_2, y_1): return the set of points in *P* whose *x*-coordinate is in the range [x_1, x_2] and whose *y*-coordinate is in the range [$y_1, -\infty$]. *Hint:* range maximum queries.
- 8 Fractional Cascading for General Arrays Let A_1 and A_2 be two sorted arrays. Solve the following exercises.
- **8.1** A fellow student wants to compactly store A_1 and A_2 to support efficient range reporting queries on both arrays using a single binary search. He suggest using fractional cascading (as described in the lecture). Explain why this will not work.
- **8.2** [*] Can you modify the data structure to make it work? *Hint:* Add more elements to A_1 . This is where the name *fractional cascading* comes from.

9 [*] **Fast 1D Range Reporting** Give a data structure for a set of integers $S \subseteq U = \{0, ..., u - 1\}$ of *n* values that supports the following operation:

• report(*x*, *y*): return all values in *S* between *x* and *y*, that is, the set of values $\{z \mid z \in S, x \le z \le y\}$.

The data structure should use $O(n \log u)$ space and report queries should take O(1 + occ) time. *Hint:* x-fast tries and lowest common ancestors on complete binary trees.