
Weekplan: Range Reporting

Philip Bille

References and Reading

[1] Scribe notes from MIT.

[2] Computational Geometry: Algorithms and Applications, M. de Berg, O. Cheong, M. van Kreveld and M.
Overmars,

[3] Fractional cascading: I. A data structuring technique, B. Chazelle and L. Guibas, Algoritmica, 1986

[4] Analysis of range searches in quad trees, J. L. Bentley and D. F. Stanat, Inf. Process. Lett., 1975

We recommend reading [1] in detail. [3] and [4] provide background on range trees and kD trees.

Exercises

1 [w] 2D Range Tree Example Construct a 2D range tree for the set of points

P = {(1, 3), (3, 8), (4, 1), (7,5), (6,6), (9,6), (15,4), (20, 17)}.

Draw all 1D range trees used in the construction. Simulate a report(2,2, 10,10) query and show all queries to 1D
range trees.

2 Preprocessing for 2D Range Trees Given a fast algorithm that constructs a 2D range tree from a set P ⊆R2

of n points.

3 Query Bounds for 2D Range Trees A friend suggest that the O(log2 n) analysis of reporting queries in 2D
range trees is not tight. Specifically, the query time for the 1D range tree is O(log m), where m is the number of
points stored in the 1D range tree. The 1D range trees over y-coordinate store different size subsets of P and hence
the total query time is in fact asymptotically faster than O(log2 n). Clarify the analysis. Is your friend correct?

4 [w] 2D Range Tree with Fractional Cascading Example Convert the above example for 2D range tree to
use fractional cascading. Simulate a report(2, 2,10, 10) query and show how to follow predecessor pointers.

5 kD Tree Analysis Let T be a kD tree for a set of n points P. Consider a query for a range R. We want to
bound the number of regions in T intersected by R to get a bound the query time for R. The number of regions
intersected by any rectangle is at most 4 times the number of regions intersected by any vertical or horizontal line
(why?). We bound the number of region intersected by a vertical in the following exercises and use that to prove
the bound on the query time. Solve the following exercises.

5.1 Let Q(n) denote the number of regions intersected by a vertical line in a kD tree for n points. Assume that
the first split in kD tree is on the x-axis. Show that Q(n) satisfies the following recurrence.

Q(n) =

¨

2Q(n/4) +O(1) n> 1

O(1) n= 0

5.2 Show that Q(n) = O(
p

n). Hint: draw recursion tree.

5.3 Conclude that the query time for a kD tree is O(
p

n+ occ).

5.4 Show that for some points set P of size n and some range R, the regions of the kD tree intersects with R in
Ω(
p

n) regions. Conclude that the upper bound analysis is tight up to constant factors.

1



6 Interval Trees Let I = [l1, r1], . . . , [ln, rn] be a set n of intervals. Give an efficient data structure that supports
the following operation.

• intersect(x): return the set of intervals that contain the point x .

Hint: Start with a complete binary tree over the endpoints.

7 Skyline Range Reporting Let P ⊆R2 be a set of n points. Give an efficient data structure that supports the
following operation.

• report3(x1, x2, y1): return the set of points in P whose x-coordinate is in the range [x1, x2] and whose
y-coordinate is in the range [y1,−∞]. Hint: range maximum queries.

8 Fractional Cascading for General Arrays Let A1 and A2 be two sorted arrays. Solve the following exercises.

8.1 A fellow student wants to compactly store A1 and A2 to support efficient range reporting queries on both
arrays using a single binary search. He suggest using fractional cascading (as described in the lecture).
Explain why this will not work.

8.2 [∗] Can you modify the data structure to make it work? Hint: Add more elements to A1. This is where the
name fractional cascading comes from.

9 [∗] Fast 1D Range Reporting Give a data structure for a set of integers S ⊆ U = {0, . . . , u− 1} of n values
that supports the following operation:

• report(x , y): return all values in S between x and y , that is, the set of values {z | z ∈ S, x ≤ z ≤ y}.

The data structure should use O(n log u) space and report queries should take O(1+ occ) time. Hint: x-fast tries
and lowest common ancestors on complete binary trees.

2


