- Range reporting problem
- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Fractional cascading
 - kD trees

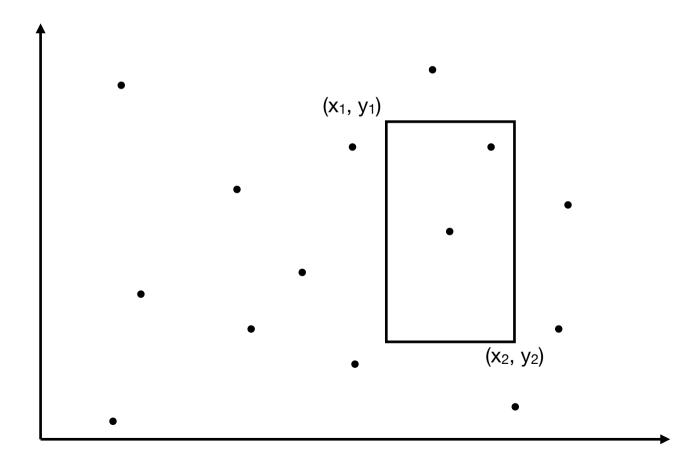
Philip Bille

Range reporting problem

- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Fractional cascading
 - kD trees

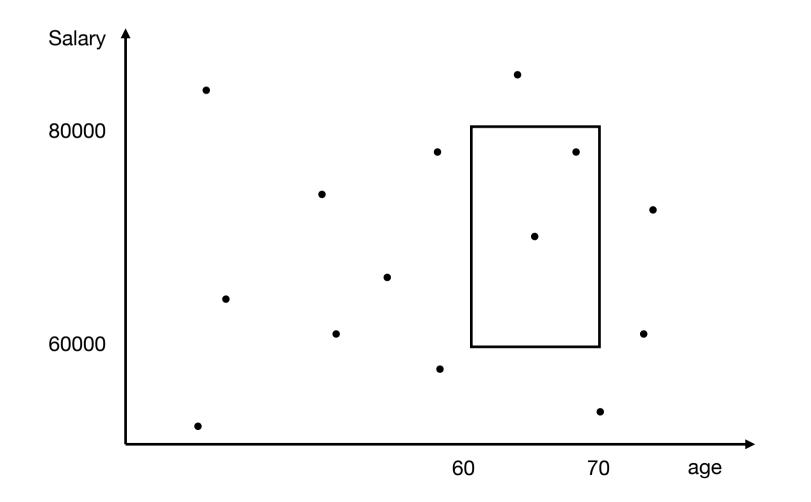
Range Reporting Problem

- 2D range reporting problem. Preprocess at set of points $P \subseteq \Re^2$ to support
 - report(x₁, y₁, x₂, y₂): Return the set of points in R ∩ P, where R is rectangle given by (x₁, y₁) and (x₂, y₂).



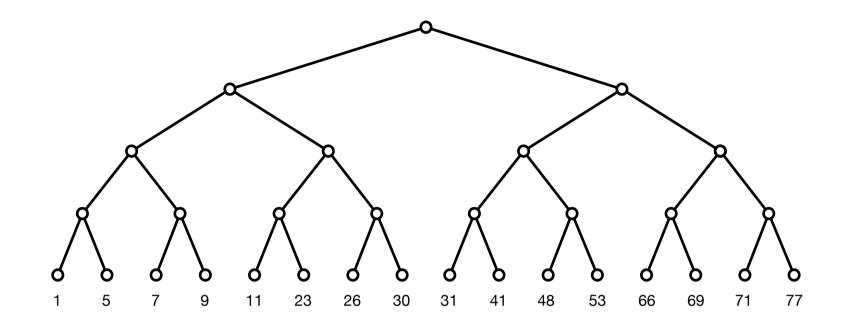
Applications

 Relational databases. SELECT all employees between 60 and 70 years old with a montly salary between 60000 and 80000 DKr

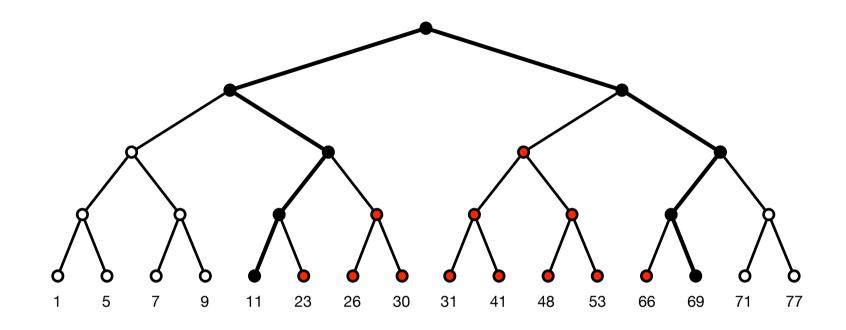


- Range reporting problem
- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Fractional cascading
 - kD trees

- 1D range reporting. Preprocess a set of n points $P \subseteq \Re$ to support:
 - report(x_1 , x_2): Return the set of points in interval [x_1 , x_2]
- Simplifying assumption. Only comparison-based techniques (no hashing or bittricks).
- Solutions?



- 1D range tree. Balanced binary tree over P in sorted order.
 - All points stored at leaves.
 - Internal nodes stored range of points below.
- Space. O(n)
- Preprocessing. O(n log n)



- Report(x₁, x₂): Search for predecessor of x₁ + successor of x₂. Traverse all nodes in between.
- Example. Report(20, 68) = {23, 26, 30, 31, 41, 48, 53, 66}.
- Time. O(log n + occ)

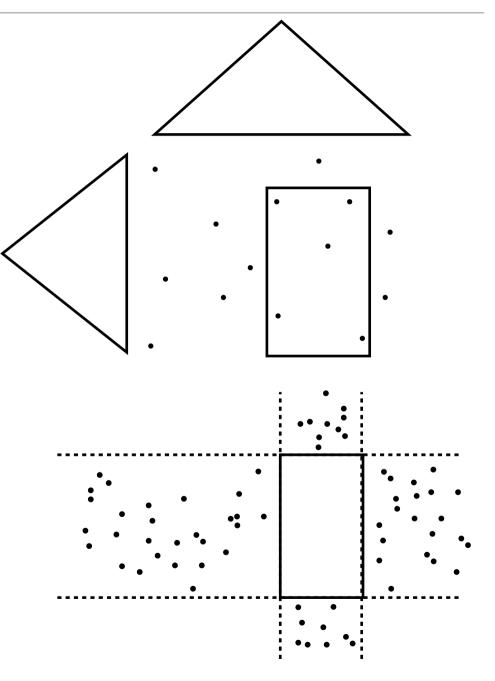
- Theorem. We can solve the 1D range reporting problem in
 - O(n) space.
 - O(log n + occ) time for queries.
 - O(n log n) preprocessing time.
- Optimal in comparison-based model.

- Range reporting problem
- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Fractional cascading
 - kD trees

- Goal. 2D range reporting with
 - O(n log n) space and O(log n + occ) query time or
 - O(n) space and O($n^{1/2}$ + occ) query time.
- Solution in 4 steps.
 - Generalized 1D range reporting.
 - 2D range trees.
 - 2D range trees with fractional cascading.
 - kD trees.

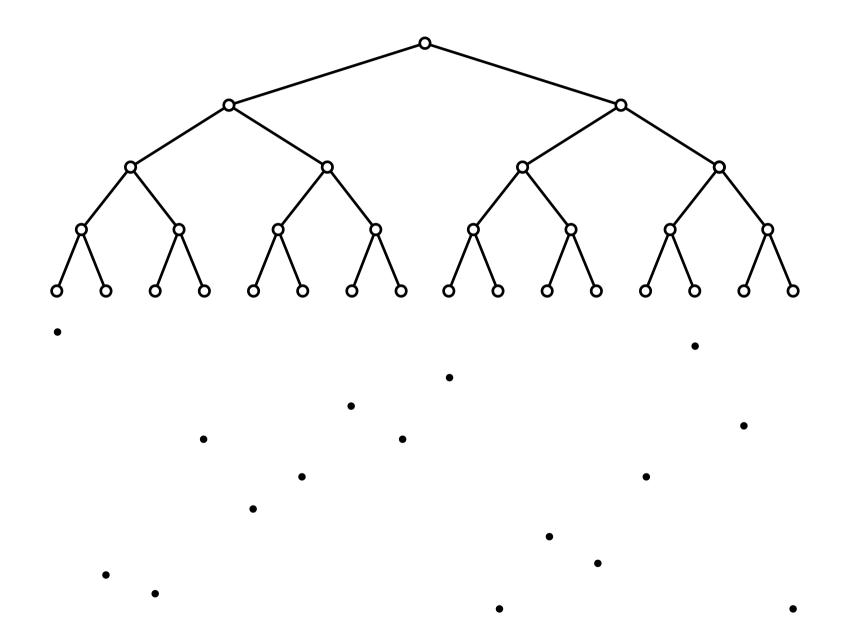
Generalized 1D Range Reporting

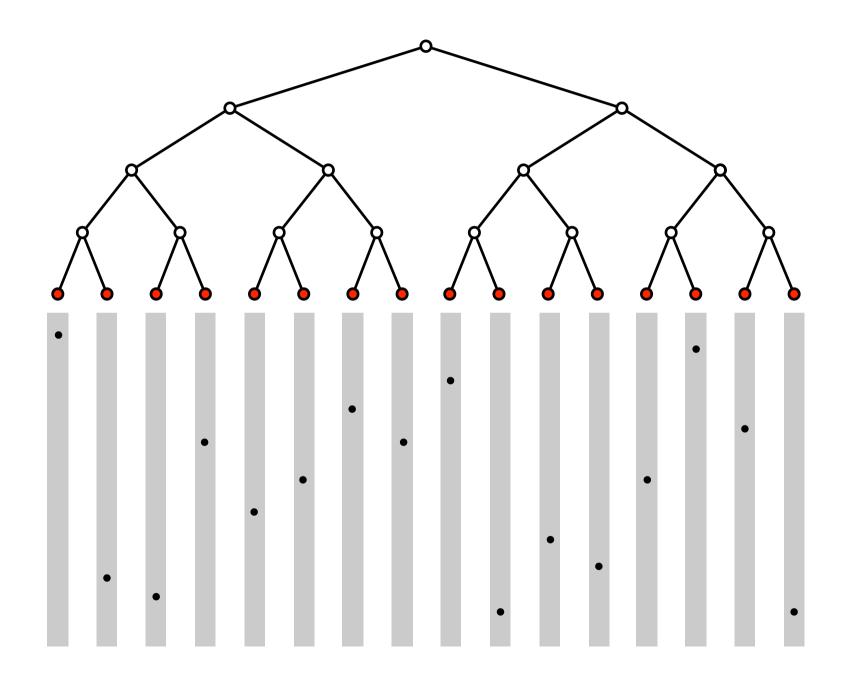
- Data structure.
 - 1D range tree T_x over x-coordinate
 - 1D range tree T_y over y-coordinate
- Report(x₁, y₁, x₂, y₂):
 - Compute all points R_x in x-range.
 - Compute all points R_y in y-range.
 - Return $R_x \cap R_y$
- Time?

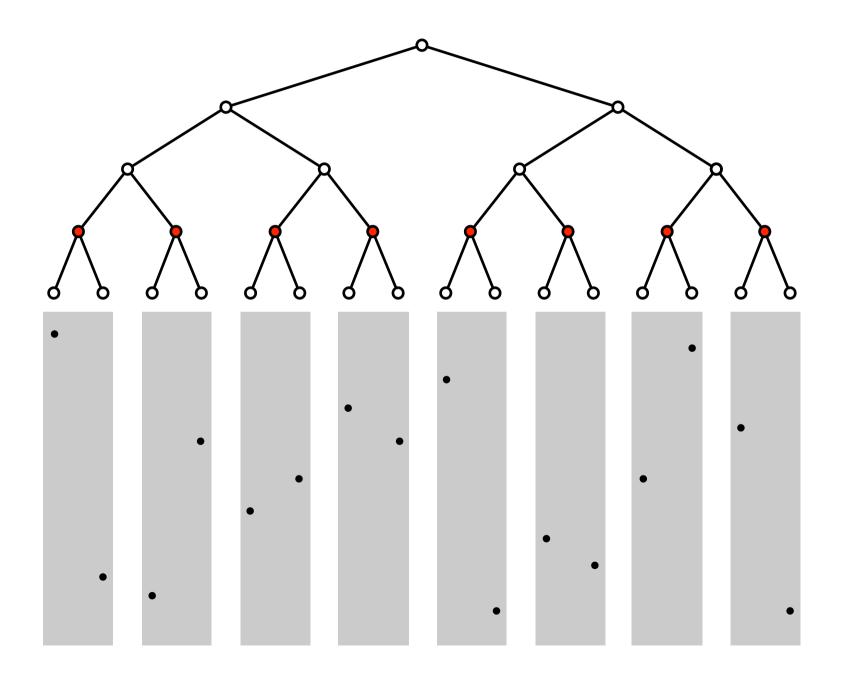


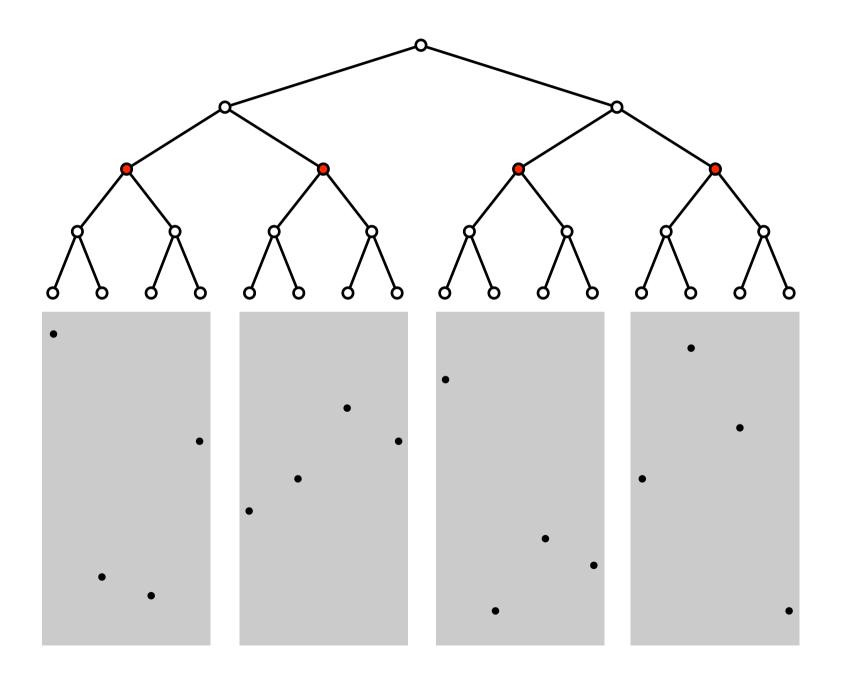
- Data structure.
 - A 1D range tree T_x over x-coordinate.
 - For each node v in T_x: Store a 1D range over y-coordinate for the subset of P below v.

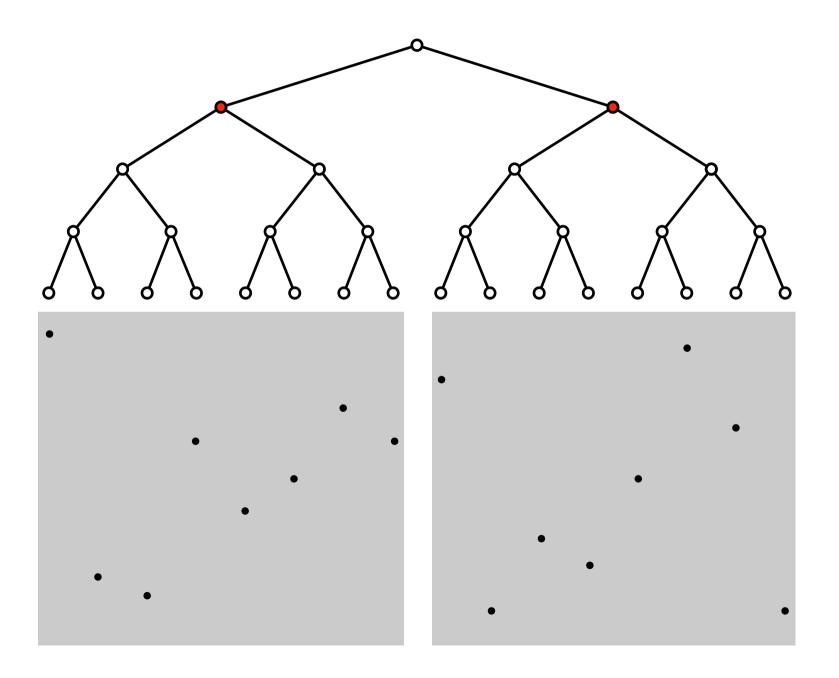
• • •

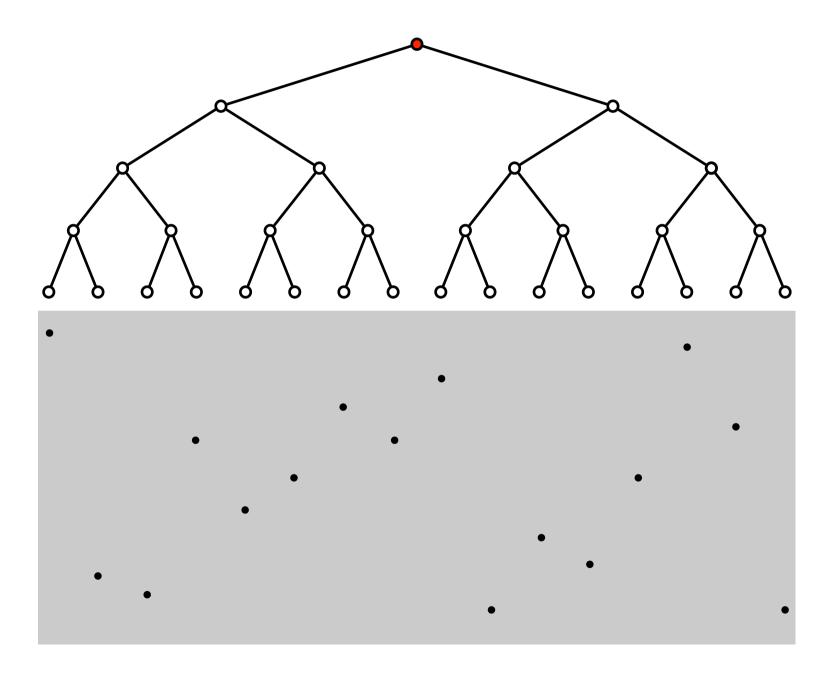






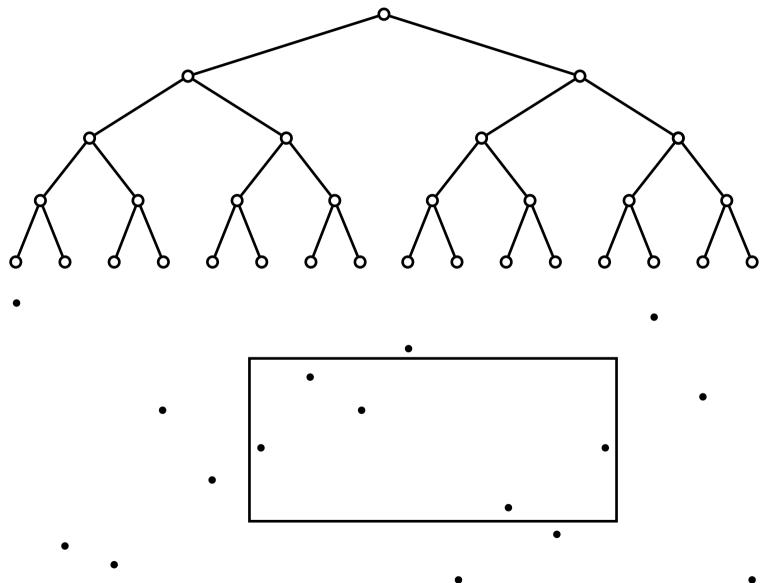


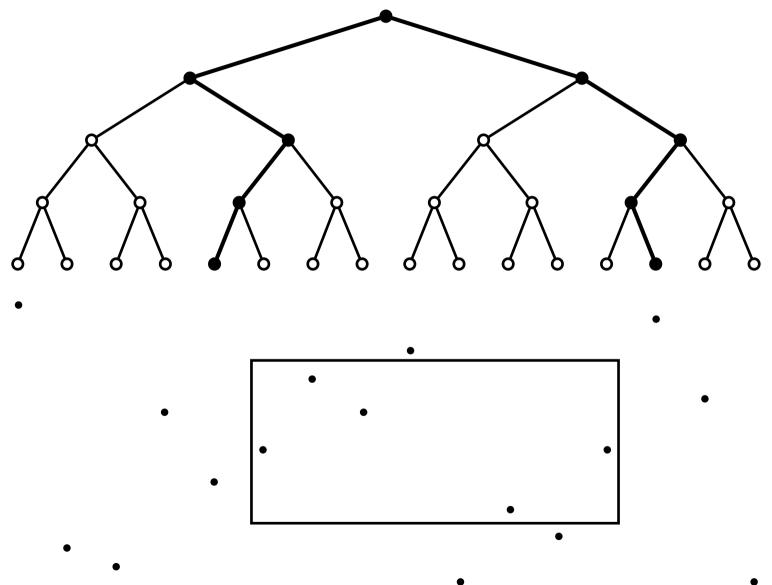


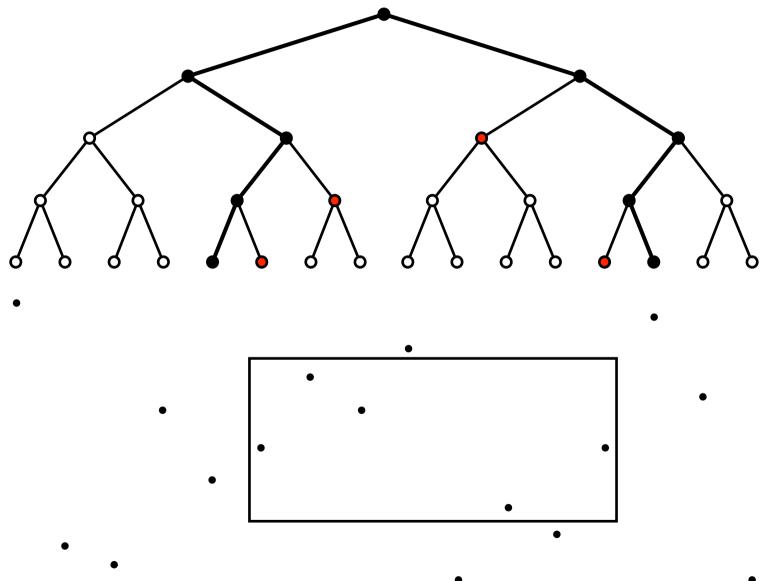


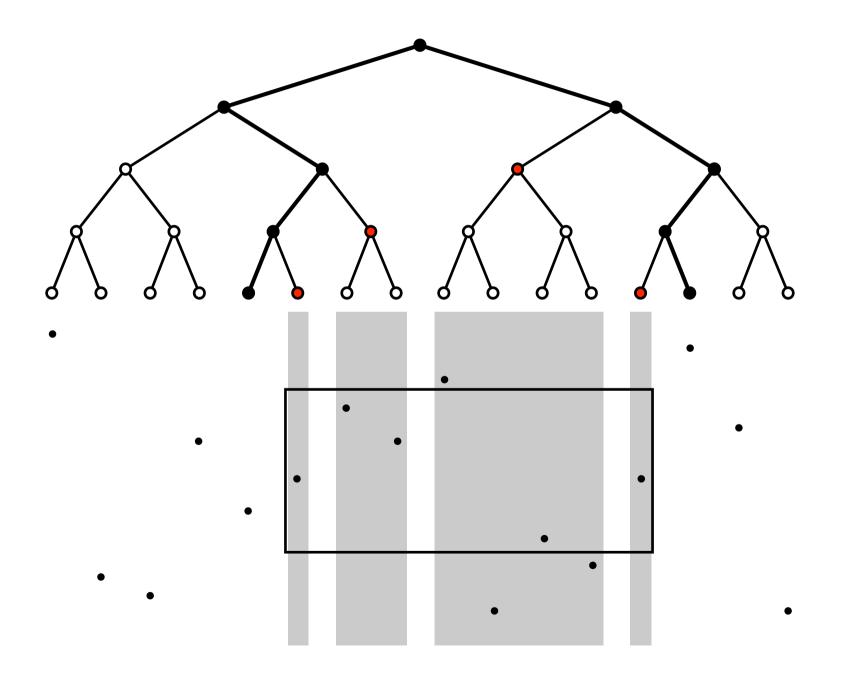
- Space.
 - Each point stored in ~log n range trees \Rightarrow O(n log n) space.
- Preprocessing time. O(n log n)

- Report(x₁, y₁, x₂, y₂):
 - Search in T_x for x-range.
 - For each node v hanging of search path within x-range:
 - Do a 1D report query with y-range.
 - Return the union of the results.









• Time.

- 1D range query on x-range: O(log n) time
- < 2log n 1D range queries: Each uses O(log n + occ in subrange) time.
- \Rightarrow in total O(log² n + occ) time.

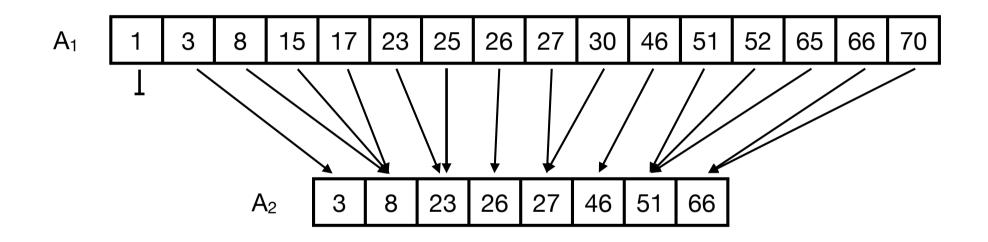
- Theorem. We can solve the 2D range reporting problem in
 - O(n log n) space.
 - $O(\log^2 n + occ)$ time for queries.
 - O(n log n) preprocessing time.
- Do we really need the log² n term for queries? Can we get (optimal) O(log n) time?

- Range reporting problem
- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Fractional cascading
 - kD trees

- Goal. 2D range reporting in O(n log n) space and O(log n) time
- Idea. Exploit properties of the O(log n) searches on y-range.
 - All searches on the same y-range.
 - Points at node v is a subset of points at parent of v.
- Solution in 2 steps.
 - · Fractional cascading for binary search on arrays.
 - Fractional cascading on 2D range trees.

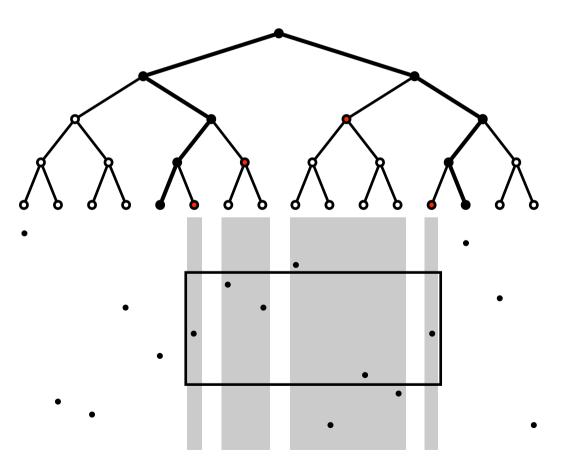
- Binary search on two arrays. Let A_1 and A_2 be two sorted arrays such that $A_2 \subseteq A_1$.
- Goal. Implement binary search for key k on both A₁ and A₂.
- Solution 1. Do a binary search for k on A_1 . Do a binary search for k on A_2
- Challenge. Can we add some data structure so we can do it with one binary search?

- Solution 2.
 - For each i store pointer to predecessor of A1[i] in A2
 - Binary search for k in A₁. Follow pointer and locate predecessor in A₂.

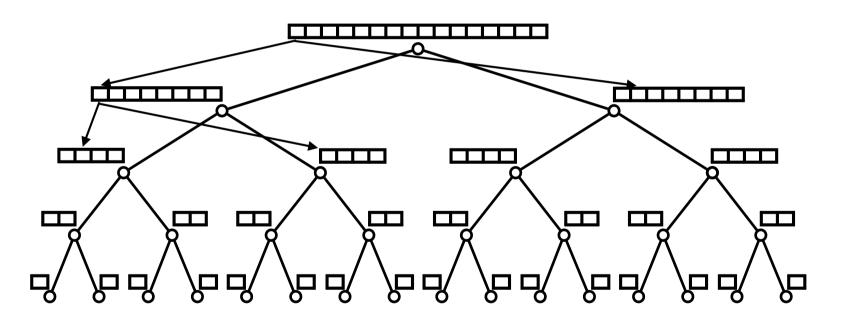


- Space. O(|A₁| + |A₂|)
- Time. O(log |A₁|)
- Binary search \Rightarrow 1D range reporting.
- Generalizes to 2+ arrays.

- 2D range trees need O(log n) searches on y-range.
 - All searches on the same y-range.
 - Points at node v is a subset of points at parent of v.
- \Rightarrow we can implement searches using fractional cascading.

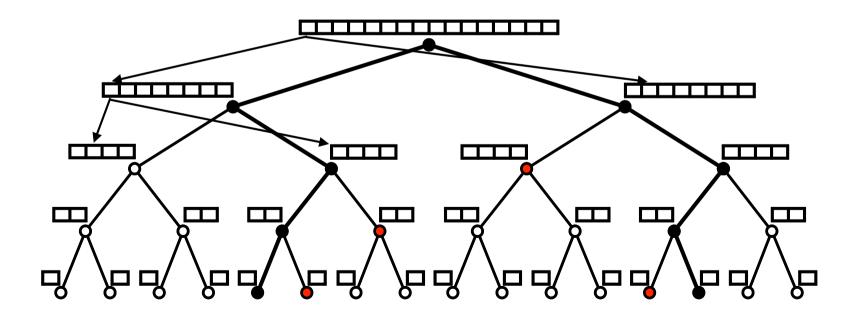


- Data structure.
 - Store a 1D range tree T_x over x-coordinate.
 - For each node v in T_x store a sorted array over y-coordinate for the subset of P below v.
 - Add predecessor pointers from the array for v to the arrays for children of v.



- Space. O(n log n)
- Preprocessing. O(n log n)

- Report(x₁, y₁, x₂, y₂):
 - Search in T_x for x-range.
 - Search in root array for y-range.
 - For each node v hanging off the search paths within the x-range:
 - Do a 1D report query with y-range using predecessor pointers.
 - Return the union of the results.



• Time.

- 1D range query on x-range: O(log n) time
- 1D range query on y-range on root array: O(log n) time
- Pointer walking: O(log n) time.
- Report points in subrange: O(occ in subrange) time.
- \Rightarrow in total O(log n + occ) time.

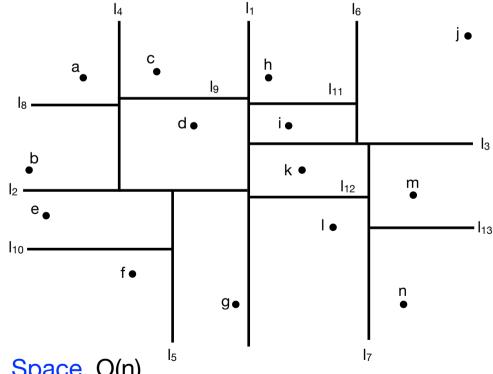
- Theorem. We can solve the 2D range reporting problem in
 - O(n log n) space
 - O(log n + occ) time for queries.
 - O(n log n) preprocessing time.
- What can we do with only linear space?

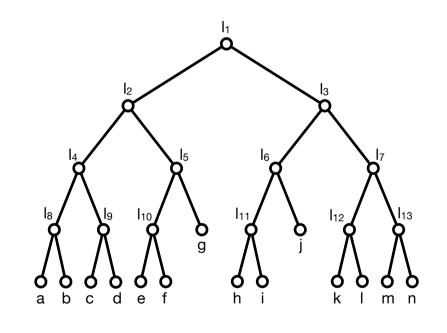
- Range reporting problem
- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Fractional cascading
 - kD trees

kD Trees

• The 2D tree (k = 2).

- A balanced binary tree over point set P.
- Recursively partition P into rectangular regions containing (roughly) same number of points. Partition by alternating horizontal and vertical lines.
- Each node in tree stores region and line.





- Space. O(n)
- Preprocessing. O(n log n)

kD Trees

- Report(x₁, y₁, x₂, y₂): Traverse 2D tree starting at the root. At node v:
 - Case 1. v is a leaf: report the unique point in region(v) if contained in range.
 - Case 2. region(v) is disjoint from range: stop.
 - Case 3. region(v) is contained in range: report all points in region(v).
 - Case 4. region(v) intersects range, and v is not a leaf. Recurse left and right.



kD trees

- Theorem. We can solve the 2D range reporting problem in
 - O(n) space
 - O(n^{1/2} + occ) time
 - O(n log n) preprocessing

- Theorem. We can solve 2D range reporting in either
 - O(n log n) space and O(log n + occ) query time
 - O(n) space and O($n^{1/2}$ + occ) query time.
- Extensions.
 - More dimensions.
 - Inserting and deleting points.
 - Using word RAM techniques.
 - Other shapes (circles, triangles, etc.)

- Range reporting problem
- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Fractional cascading
 - kD trees