
Philip Bille

Range Reporting

• Range reporting problem

• 1D range reporting

• Range trees

• 2D range reporting

• Range trees

• Fractional cascading

• kD trees

Range Reporting

• Range reporting problem

• 1D range reporting

• Range trees

• 2D range reporting

• Range trees

• Fractional cascading

• kD trees

• 2D range reporting problem. Preprocess at set of points P ⊆ ℜ2 to support

• report(x1, y1, x2, y2): Return the set of points in R ∩ P, where R is rectangle given

by (x1, y1) and (x2, y2).

Range Reporting Problem

(x1, y1)

(x2, y2)

• Relational databases. SELECT all employees between 60 and 70 years old with a
montly salary between 60000 and 80000 DKr

Applications

Salary

age

80000

60000

60 70

Range Reporting

• Range reporting problem

• 1D range reporting

• Range trees

• 2D range reporting

• Range trees

• Fractional cascading

• kD trees

• 1D range reporting. Preprocess a set of n points P ⊆ ℜ to support:

• report(x1, x2): Return the set of points in interval [x1, x2]

• Simplifying assumption. Only comparison-based techniques (no hashing or
bittricks).

• Solutions?

1D Range Reporting

• 1D range tree. Balanced binary tree over P in sorted order.

• All points stored at leaves.

• Internal nodes stored range of points below.

• Space. O(n)

• Preprocessing. O(n log n)

1D Range Reporting

1 5 7 9 11 23 26 30 31 41 48 53 66 69 71 77

• Report(x1, x2): Search for predecessor of x1 + successor of x2. Traverse all nodes in
between.

• Example. Report(20, 68) = {23, 26, 30, 31, 41, 48, 53, 66}.

• Time. O(log n + occ)

1D Range Reporting

1 5 7 9 11 23 26 30 31 41 48 53 66 69 71 77

• Theorem. We can solve the 1D range reporting problem in

• O(n) space.

• O(log n + occ) time for queries.

• O(n log n) preprocessing time.

• Optimal in comparison-based model.

1D Range Reporting

Range Reporting

• Range reporting problem

• 1D range reporting

• Range trees

• 2D range reporting

• Range trees

• Fractional cascading

• kD trees

• Goal. 2D range reporting with

• O(n log n) space and O(log n + occ) query time or

• O(n) space and O(n1/2 + occ) query time.

• Solution in 4 steps.

• Generalized 1D range reporting.

• 2D range trees.

• 2D range trees with fractional cascading.

• kD trees.

2D Range reporting

• Data structure.

• 1D range tree Tx over x-coordinate

• 1D range tree Ty over y-coordinate

• Report(x1, y1, x2, y2):

• Compute all points Rx in x-range.

• Compute all points Ry in y-range.

• Return Rx ∩ Ry

• Time?

Generalized 1D Range Reporting

• Data structure.

• A 1D range tree Tx over x-coordinate.

• For each node v in Tx: Store a 1D range over y-coordinate for the subset of P

below v.

2D Range Trees

2D Range Trees

2D Range Trees

2D Range Trees

2D Range Trees

2D Range Trees

2D Range Trees

2D Range Trees

• Space.

• Each point stored in ~log n range trees ⟹ O(n log n) space.

• Preprocessing time. O(n log n)

2D Range Trees

• Report(x1, y1, x2, y2):

• Search in Tx for x-range.

• For each node v hanging of search path within x-range:

• Do a 1D report query with y-range.

• Return the union of the results.

2D Range Trees

2D Range Trees

2D Range Trees

2D Range Trees

2D Range Trees

• Time.

• 1D range query on x-range: O(log n) time

• < 2log n 1D range queries: Each uses O(log n + occ in subrange) time.

• ⟹ in total O(log2 n + occ) time.

2D Range Trees

• Theorem. We can solve the 2D range reporting problem in

• O(n log n) space.

• O(log2 n + occ) time for queries.

• O(n log n) preprocessing time.

• Do we really need the log2 n term for queries? Can we get (optimal) O(log n) time?

2D Range Reporting

Range Reporting

• Range reporting problem

• 1D range reporting

• Range trees

• 2D range reporting

• Range trees

• Fractional cascading

• kD trees

Fractional Cascading
• Goal. 2D range reporting in O(n log n) space and O(log n) time

• Idea. Exploit properties of the O(log n) searches on y-range.

• All searches on the same y-range.

• Points at node v is a subset of points at parent of v.

• Solution in 2 steps.

• Fractional cascading for binary search on arrays.

• Fractional cascading on 2D range trees.

• Binary search on two arrays. Let A1 and A2 be two sorted arrays such that A2 ⊆ A1.

• Goal. Implement binary search for key k on both A1 and A2.

• Solution 1. Do a binary search for k on A1. Do a binary search for k on A2

• Challenge. Can we add some data structure so we can do it with one binary search?

Fractional Cascading

1 3 8 15 17 23 25 26 27 30 46 51 52 65 66 70A1

3 8 23 26 27 46 51 66A2

• Solution 2.

• For each i store pointer to predecessor of A1[i] in A2

• Binary search for k in A1. Follow pointer and locate predecessor in A2.

Fractional Cascading

1 3 8 15 17 23 25 26 27 30 46 51 52 65 66 70A1

3 8 23 26 27 46 51 66A2

• Space. O(|A1| + |A2|)

• Time. O(log |A1|)

• Binary search ⟹ 1D range reporting.

• Generalizes to 2+ arrays.

• 2D range trees need O(log n) searches on y-range.

• All searches on the same y-range.

• Points at node v is a subset of points at parent of v.

• ⟹ we can implement searches using fractional cascading.

Fractional Cascading

• Data structure.

• Store a 1D range tree Tx over x-coordinate.

• For each node v in Tx store a sorted array over y-coordinate for the subset of P

below v.

• Add predecessor pointers from the array for v to the arrays for children of v.

• Space. O(n log n)

• Preprocessing. O(n log n)

Fractional Cascading

• Report(x1, y1, x2, y2):

• Search in Tx for x-range.

• Search in root array for y-range.

• For each node v hanging off the search paths within the x-range:

• Do a 1D report query with y-range using predecessor pointers.

• Return the union of the results.

Fractional Cascading

• Time.

• 1D range query on x-range: O(log n) time

• 1D range query on y-range on root array: O(log n) time

• Pointer walking: O(log n) time.

• Report points in subrange: O(occ in subrange) time.

• ⟹ in total O(log n + occ) time.

Fractional Cascading

• Theorem. We can solve the 2D range reporting problem in

• O(n log n) space

• O(log n + occ) time for queries.

• O(n log n) preprocessing time.

• What can we do with only linear space?

Fractional Cascading

Range Reporting

• Range reporting problem

• 1D range reporting

• Range trees

• 2D range reporting

• Range trees

• Fractional cascading

• kD trees

• The 2D tree (k = 2).

• A balanced binary tree over point set P.

• Recursively partition P into rectangular regions containing (roughly) same number

of points. Partition by alternating horizontal and vertical lines.

• Each node in tree stores region and line.

• Space. O(n)

• Preprocessing. O(n log n)

kD Trees

a

b

d

c

f

e

g

h

i

j

k

l

m

n

l1

l2

l3

l6l4

l8

l10

l5 l7

l12

l13

l9 l2 l3

l4 l5 l6 l7

l8 l9 l10 l11 l13

g j

a b c d e f k l m nh i

l12

l1

l11

• Report(x1, y1, x2, y2): Traverse 2D tree starting at the root. At node v:

• Case 1. v is a leaf: report the unique point in region(v) if contained in range.

• Case 2. region(v) is disjoint from range: stop.

• Case 3. region(v) is contained in range: report all points in region(v).

• Case 4. region(v) intersects range, and v is not a leaf. Recurse left and right.

• Time. O(n1/2)

kD Trees

a

b

d

c

f

e

g

h

i

j

k

l

m

n

l1

l2

l3

l6l4

l8

l10

l5 l7

l12

l13

l9 l2 l3

l4 l5 l6 l7

l8 l9 l10 l11 l13

g j

a b c d e f k l m nh i

l12

l1

l11

• Theorem. We can solve the 2D range reporting problem in

• O(n) space

• O(n1/2 + occ) time

• O(n log n) preprocessing

kD trees

• Theorem. We can solve 2D range reporting in either

• O(n log n) space and O(log n + occ) query time

• O(n) space and O(n1/2 + occ) query time.

• Extensions.

• More dimensions.

• Inserting and deleting points.

• Using word RAM techniques.

• Other shapes (circles, triangles, etc.)

2D Range Reporting

Range Reporting

• Range reporting problem

• 1D range reporting

• Range trees

• 2D range reporting

• Range trees

• Fractional cascading

• kD trees

