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Inge Li Gørtz

References and Reading

[1] Algorithm Design, Kleinberg and Tardos, Addison-Wesley, section 11.0, 11.1. Available on CampusNet.

[2] The Design of Approximation Algorithms, Williamson and Shmoys, Cambridge Press, section 2.3 and 2.4.

We expect you to read [1] and section 2.4 in [2] in detail before the lecture. Section 2.3 [2]is alternative reading
for the part about scheduling.

In the pretest (see link on Piazza) you can check if you understand the basics before the lecture. The pretest is
an absolute minimum for what you should know before the lecture.

Exercises

1 Acyclic Graph Given a directed graph G = (V, E), pick a maximum cardinality set of edges from E such that
the resulting graph is acyclic. Give a 1/2-approximation algorithm for this problem.

Hint Arbitrarily number the vertices and pick the bigger of the two sets, the forward going edges and the ba-
ckward going edges.

2 Minimum Maximal Matching A matching in a graph G = (V, E) is a subset of edges M ⊆ E, such that no two
edges in M share an endpoint. A maximal matching is a matching that cannot be extended, i.e., it is not possible
to add an edge from E \M to M without violating the constraint.

Design a 2-approximation algorithm for finding a minimum cardinality maximal matching in an undirected
graph.

Hint Use the fact that any maximal matching is at least half the maximum maximal matching.

3 Longest processing time rule Show that LPT obtains an approximation factor of 4/3− 1/(3m).

4 Tight example for LPT Give almost tight examples for the LPT algorithm for scheduling on parallel identical
machines. That is, give an example showing that LPT can produce a schedule that is a factor (4/3− 1/3m) from
optimum.

5 Shipping consultant1 You are a consultant for a large Danish shipping company "Ships, Ships, and Ships".
They have the following problem. When a ship arrives at a port they have to unload the containers from the
ship onto trucks. A ship carries containers with different weights, w1, w2, . . . , wn. Each truck can carry multiple
containers, but only up to a total weight of W . The shipping company wants to use as few trucks as possible to
unload the ship. This is a NP-complete problem.

You suggest that they use the following greedy algorithm: Consider the containers in any order. Start with an
empty truck and begin stacking containers on it until you get to a container that would overload the truck. This
truck is now declared loaded and sent away, and you continue with a new truck.

This algorithm might not be optimal, but it is simple and easy to implement in practice.

5.1 Prove that the number of trucks used by the algorithm is within a factor of 2 from the optimum.

1inspired by [1]
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5.2 Show that this is tight. That is, give an example, that shows that the algorithm might use (almost) twice as
many trucks as the optimum solution.

6 Scheduling on related parallel machines (exercise 2.4 in [2]) In this problem, we consider a variant of
the problem of scheduling on parallel machines so as to minimize the length of the schedule. Now each machine
i has an associated speed si , and it takes t j/si units of time to process job j on machine i. Assume that machines
are numbered from 1 to m and ordered such that s1 ≥ s2 ≥ · · · ≥ sm. We call these related machines.

6.1 A ρ-relaxed decision procedure for a scheduling problem is an algorithm such that given an instance of
the scheduling problem and a deadline D either produces a schedule of length at most ρ · D or correctly
states that no schedule of length D is possible for the instance. Show that given a polynomial-time ρ-relaxed
decision procedure for the problem of scheduling related machines, one can produce a ρ-approximation
algorithm for the problem.

6.2 Consider the following variant of the list scheduling algorithm, now for related machines. Given a deadline
D, we label every job j with the slowest machine i such that the job could complete on that machine in time
D; that is, t j/si ≤ D. If there is no such machine for a job j, it is clear that no schedule of length D is possible.
If machine i becomes idle at a time D or later, it stops processing. If machine i becomes idle at a time before
D, it takes the next job of label i that has not been processed, and starts processing it. If no job of label i is
available, it looks for jobs of label i + 1; if no jobs of label i + 1 are available, it looks for jobs of label i + 2,
and so on. If no such jobs are available, it stops processing. If not all jobs are processed by this procedure,
then the algorithm states that no schedule of length D is possible.

(a) Prove that if the algorithm returns a schedule then it is of length at most 2D.

(b) Prove that if if the algorithm states that no schedule of length D is possible, then D < T ∗, where T ∗

denotes the length/makespan of the optimal schedule.

(c) Prove that the algorithm is a polynomial-time 2-relaxed decision procedure.

7 [∗] Longest processing time rule Prove that for any input where the processing time of each job is more
than a third of the optimal makespan, LPT computes an optimal schedule.

8 TSP with fixed start and endpoint In the traveling salesman problem with fixed start and endpoint we are
given a start point s and an endpoint t 6= s. The salesman must still visit each city exactly once, but he now has
to start in s and end in t. Give an approximation algorithm for this problem. Try to get an approximation factor
better than 2.

9 Bottleneck TSP In the metric bottleneck travelling salesman problem we have a complete graph with distan-
ces satisfying the triangle inequality, and we want to find a hamiltonian cycle such that the cost of the most costly
edge in the cycle is minimized. The goal of this exercise is to give a 3-approximation algorithm for this problem.

9.1 A bottleneck minimum spanning tree of a graph G is a spanning tree minimizing the heaviest edge used.
Argue that it is possible to find an optimal bottleneck MST in polynomial time.

9.2 Show that it is possible to construct a walk visiting all nodes in a bottleneck MST exactly once without
shortcutting more than 2 consecutive nodes.

9.3 Give a 3-approximation algorithm for bottleneck TSP (remember to prove that it is a 3-approximation algo-
rithm).

10 Asymmetric TSP Solve exercise 1.3 in [2].
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