L daio ctouctiras

B-trees and B®-trees

B-trees

A

Height logs N

branching
factor of root:
2B

branching
factor: (B/2,B]

Elements in leaves in sorted order: between B/2 and B in each leaf

- Operations

- insert(k, v)

- delete(k)

- v = search(k)

* [vq, Vn,...] = range-query(k;,ks)

Node:

o

65

-

B-1 pivot elements

e

<10 > 10 and <65 > 65 and < 83 > 83

B-trees

A

Height logs N

branching
factor of root:
2B

branching
factor: (B/2,B]

Elements in leaves in sorted order: between B/2 and B in each leaf

A node/leaf can be stored in
O(1) blocks.

Search uses O(logg N) 1/Os.

Node:

o

65

-

B-1 pivot elements

2Nl

<10 > 10 and <65 > 65 and < 83 > 83

B-trees

branching
factor of root:
2B

Height logs N branching

factor: (B/2,B]
e e bl

Elements in leaves in sorted order: between B/2 and B in each leaf

A

Range query [g1,0z2]:

search down T for gy and g» (or successor and predecessor).

report the elements in the leaves between the leaves containing
(successor of) g1 and (predecessor of) gs».

#1/0Os = O(log_B N + occ/B).

INnsertion 1N B-tree

- Insert(k, v)
- search for relevant leaf u and insert (k,v) in u.
- If u now contains B+1 elements:
- split it into two leaves u” and u”’.
- update parent(u)
- If parent(u) now has degree B+1 recursively split it.
- If root split: add a new root node with degree 2 (height of tree grows)

Example. B= 5. Insert(24, v)

B A —

INnsertion 1N B-tree

- Insert(k, v)
- search for relevant leaf u and insert (k,v) in u.
- If u now contains B+1 elements:
- split it into two leaves u” and u”’.
- update parent(u)
- If parent(u) now has degree B+1 recursively split it.
- If root split: add a new root node with degree 2 (height of tree grows)

Example. B= 6. Insert(18, v)

A —
- e W

12 23 24 26 42

26 42 55

INnsertion 1N B-tree

- Insert(k, v)
- search for relevant leaf u and insert (k,v) in u.
- |f u now contains B+1 elements:
- split it into two leaves u” and u”’.
- update parent(u)
- If parent(u) now has degree B+1 recursively split it.
- If root split: add a new root node with degree 2 (height of tree grows)

- #1/Os = O(logg N)

Deletion In B-tree

- Delete(k)
- search for relevant leaf u and delete element with key k in u.
- If u now contains B/2 - 1 elements:

- merge u with its sibling u’. If this results in u containing more than B elements split
it into two leaves.

- update parent(u)
- If parent(u) now has degree B/2 - 1 recursively merge it.
- If root has degree 1: delete root (height decreases)

Example. B= 6. Delete(24)

10 83
10 65 83
12 23 24 26 s o =

Deletion In B-tree

- Delete(k)
- search for relevant leaf u and delete element with key k in u.
- If u now contains B/2 - 1 elements:

- merge u with its sibling u’. If this results in u containing more than B elements split
it into two leaves.

- update parent(u)
- If parent(u) now has degree B/2 - 1 recursively merge it.
- If root has degree 1: delete root (height decreases)

Example. B= 6. Delete(18)

Rt T, ety A\

12 18 23 24 26 43 12 23 24 26 43

Deletion In B-tree

- Delete(k)
- search for relevant leaf u and delete element with key k in u.
- If u now contains B/2 - 1 elements:

- merge u with its sibling u’. If this results in u containing more than B elements split
it into two leaves.

- update parent(u)

- If parent(u) now has degree B/2 - 1 recursively merge it. /
- If root has degree 1: delete root (height decreases) 0 | 65 | 83
Example. B= 6. Delete(18)) 12 | 23| 24 |26 | 28 | 42 | 55

y: o}

12 23 24 26 28 4

Deletion In B-tree

- Delete(k)
- search for relevant leaf u and delete element with key k in u.
- If u now contains B/2 - 1 elements:

- merge u with its sibling u’. If this results in u containing more than B elements
split it into two leaves.

- update parent(u)
- If parent(u) now has degree B/2 - 1 recursively merge it.
- If root has degree 1: delete root (height decreases)

- #|/Os = O(IogB N)

(a,b)-trees

branching
factor of root:
2,b :
A o branching factor:
Height loga N [a,b]

Elements in leaves in sorted order: between a and b in each leaf

- Operations

- insert(k, v) Node: /
between a-1 and
b-1 pivot elements

- delete(k) //m = <\

- search(k
(k) =10 >0 and < 65 > 65 and < 83 =~ 83

- v = range-query(k)

© [vy, Vp,...] = range-query(k; k,) a B-tree is an (a,b)-tree with a,b=0(B)

Amortized updates in (a,b)-
frees

- |f b > 2a then the number of rebalancing
operations caused by an update O(1/a)
amortized

B® trees

[

B

ﬁ fanout: B®
buffers of size B'™®
y4 AN

v Eor—p - i

. Updates: O((log,..¢ N)/B)
= ot quern: Ollog, & NJ)
- Range query:

- O((logy,g® N)+ occ/B)

s o 4D

. Updates: O((logg N)//B)
. Point query: O(logg N)
- Range query:

+ O((logg N)+ occ/B)

