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B-trees

branching 
factor: (B/2,B]

Height logB N 

Elements in leaves in sorted order: between B/2 and B in each leaf

10 65 83

Node:

≤ 10 > 10 and ≤ 65 > 65 and ≤ 83 > 83

B-1 pivot elements

• Operations 

• insert(k, v) 

• delete(k) 

• v = search(k) 

• [v1, v2 ,…] = range-query(k1,k2)

branching 
factor of root: 

[2,B]

B-trees

branching 
factor: (B/2,B]

Height logB N 

Elements in leaves in sorted order: between B/2 and B in each leaf

• A node/leaf can be stored in 
O(1) blocks. 

• Search uses O(logB N) I/Os.

branching 
factor of root: 

[2,B]

10 65 83

Node:

≤ 10 > 10 and ≤ 65 > 65 and ≤ 83 > 83

B-1 pivot elements

B-trees

branching 
factor: (B/2,B]

Height logB N 

Elements in leaves in sorted order: between B/2 and B in each leaf

• Range query [q1,q2]: 

• search down T for q1 and q2 (or successor and predecessor). 

• report the elements in the leaves between the leaves containing 
(successor of) q1 and (predecessor of) q2. 

• #I/Os = O(log_B N + occ/B).

branching 
factor of root: 

[2,B]



Insertion in B-tree
• Insert(k, v)

• search for relevant leaf u and insert (k,v) in u. 
• If u now contains B+1 elements:  

• split it into two leaves u′ and u′′. 
• update parent(u)  
• If parent(u) now has degree B+1 recursively split it. 

• If root split: add a new root node with degree 2 (height of tree grows)

10 65 83

12 23 26

• Example. B= 5. Insert(24, v) 

10 65 83

12 23 24 26

Insertion in B-tree
• Insert(k, v)

• search for relevant leaf u and insert (k,v) in u. 
• If u now contains B+1 elements:  

• split it into two leaves u′ and u′′. 
• update parent(u)  
• If parent(u) now has degree B+1 recursively split it. 

• If root split: add a new root node with degree 2 (height of tree grows)

• Example. B= 6. Insert(18, v) 

10 65 83

12 23 24 26 42 55

10 24 65 83

12 18 23 24 26 42 55

Insertion in B-tree
• Insert(k, v)

• search for relevant leaf u and insert (k,v) in u. 
• If u now contains B+1 elements:  

• split it into two leaves u′ and u′′. 
• update parent(u)  
• If parent(u) now has degree B+1 recursively split it. 

• If root split: add a new root node with degree 2 (height of tree grows) 

• #I/Os = O(logB N) 

Deletion in B-tree
• Delete(k)

• search for relevant leaf u and delete element with key k  in u. 
• If u now contains B/2 - 1 elements:  

• merge u with its sibling u′. If this results in u containing more than B elements split 
it into two leaves. 

• update parent(u)  
• If parent(u) now has degree B/2 - 1 recursively merge it. 

• If root has degree 1: delete root (height decreases)

10 65 83

12 23 26

• Example. B= 6. Delete(24) 

10 65 83

12 23 24 26



Deletion in B-tree
• Delete(k)

• search for relevant leaf u and delete element with key k  in u. 
• If u now contains B/2 - 1 elements:  

• merge u with its sibling u′. If this results in u containing more than B elements split 
it into two leaves. 

• update parent(u)  
• If parent(u) now has degree B/2 - 1 recursively merge it. 

• If root has degree 1: delete root (height decreases)

• Example. B= 6. Delete(18) 

10 65 83

12 23 24 26 43

10 23 65 83

12 18 23 24 26 43

Deletion in B-tree
• Delete(k)

• search for relevant leaf u and delete element with key k  in u. 
• If u now contains B/2 - 1 elements:  

• merge u with its sibling u′. If this results in u containing more than B elements split 
it into two leaves. 

• update parent(u)  
• If parent(u) now has degree B/2 - 1 recursively merge it. 

• If root has degree 1: delete root (height decreases)

• Example. B= 6. Delete(18) 

10 65 83

12 23 24 26 28 42 55

10 23 65 83

12 18 23 24 26 28 42 55

10 26 65 83

12 23 24 26 28 42 55

Deletion in B-tree
• Delete(k)

• search for relevant leaf u and delete element with key k  in u. 
• If u now contains B/2 - 1 elements:  

• merge u with its sibling u′. If this results in u containing more than B elements 
split it into two leaves. 

• update parent(u)  
• If parent(u) now has degree B/2 - 1 recursively merge it. 

• If root has degree 1: delete root (height decreases) 

• #I/Os = O(log
B
 N) 

(a,b)-trees
branching factor: 

[a,b]Height loga N 

Elements in leaves in sorted order: between a and b in each leaf

10 65 83

Node:

≤ 10 > 10 and ≤ 65 > 65 and ≤ 83 > 83

between a-1 and 
b-1 pivot elements

• Operations 

• insert(k, v) 

• delete(k) 

• search(k) 

• v = range-query(k) 

• [v1, v2 ,…] = range-query(k1,k2)

branching 
factor of root: 

[2,b]

a B-tree is an (a,b)-tree with a,b=Θ(B)



Amortized updates in (a,b)-
trees

• If b ≥ 2a then the number of rebalancing 
operations caused by an update O(1/a) 
amortized

Bε trees
buffers of size B1-ε

fanout: Bε

…………

B

• For 0 ≤ ε ≤ 1: 
• Updates: O((log1+B

ε N)/B
1-ε

) 
• Point query: O(log1+B

ε N)) 
• Range query:  

• O((log1+B
ε N)+ occ/B)

• ε =1/2: 
• Updates: O((logB N)/√B) 
• Point query: O(logB N) 
• Range query:  

• O((logB
 N)+ occ/B)


