I/O data structures

B-trees and B^ε-trees

B-trees

Elements in leaves in sorted order: between B/2 and B in each leaf

- Operations
 - insert(k, v)
 - delete(k)
 - v = search(k)
 - $[v_1, v_2, ...]$ = range-query (k_1, k_2)

B-trees

Elements in leaves in sorted order: between B/2 and B in each leaf

- A node/leaf can be stored in O(1) blocks.
- Search uses O(log_B N) I/Os.

B-trees

Elements in leaves in sorted order: between B/2 and B in each leaf

- Range query [q₁,q₂]:
 - search down T for q₁ and q₂ (or successor and predecessor).
 - report the elements in the leaves between the leaves containing (successor of) q₁ and (predecessor of) q₂.
- $\#I/Os = O(log_B N + occ/B)$.

Insertion in B-tree

- · Insert(k, v)
 - search for relevant leaf u and insert (k,v) in u.
 - If u now contains B+1 elements:
 - split it into two leaves u' and u''.
 - update parent(u)
 - If parent(u) now has degree B+1 recursively split it.
 - If root split: add a new root node with degree 2 (height of tree grows)

Insertion in B-tree

- · Insert(k, v)
 - search for relevant leaf u and insert (k,v) in u.
 - If u now contains B+1 elements:
 - split it into two leaves u' and u''.
 - update parent(u)
 - If parent(u) now has degree B+1 recursively split it.
 - If root split: add a new root node with degree 2 (height of tree grows)
- Example. B= 6. Insert(18, v)

Insertion in B-tree

- · Insert(k, v)
 - search for relevant leaf u and insert (k,v) in u.
 - If u now contains B+1 elements:
 - split it into two leaves u' and u''.
 - update parent(u)
 - If parent(u) now has degree B+1 recursively split it.
 - If root split: add a new root node with degree 2 (height of tree grows)
- $\#I/Os = O(log_B N)$

- search for relevant leaf u and delete element with key k in u.
- If u now contains B/2 1 elements:
 - merge u with its sibling u'. If this results in u containing more than B elements split it into two leaves.
 - update parent(u)
 - If parent(u) now has degree B/2 1 recursively merge it.
- If root has degree 1: delete root (height decreases)
- Example. B= 6. Delete(24)

- search for relevant leaf u and delete element with key k in u.
- If u now contains B/2 1 elements:
 - merge u with its sibling u'. If this results in u containing more than B elements split it into two leaves.
 - update parent(u)
 - If parent(u) now has degree B/2 1 recursively merge it.
- If root has degree 1: delete root (height decreases)
- Example. B= 6. Delete(18)

- search for relevant leaf u and delete element with key k in u.
- If u now contains B/2 1 elements:
 - merge u with its sibling u'. If this results in u containing more than B elements split it into two leaves.
 - update parent(u)
 - If parent(u) now has degree B/2 1 recursively merge it.
- If root has degree 1: delete root (height decreases)

- search for relevant leaf u and delete element with key k in u.
- If u now contains B/2 1 elements:
 - merge u with its sibling u'. If this results in u containing more than B elements split it into two leaves.
 - update parent(u)
 - If parent(u) now has degree B/2 1 recursively merge it.
- If root has degree 1: delete root (height decreases)
- $\#I/Os = O(log_B N)$

(a,b)-trees

Elements in leaves in sorted order: between a and b in each leaf

- Operations
 - insert(k, v)
 - delete(k)
 - search(k)
 - v = range-query(k)
 - $[v_1, v_2, \dots] = range-query(k_1, k_2)$

a B-tree is an (a,b)-tree with $a,b=\Theta(B)$

Amortized updates in (a,b)-trees

 If b ≥ 2a then the number of rebalancing operations caused by an update O(1/a) amortized

B^e trees

- For $0 \le \varepsilon \le 1$:
 - Updates: $O((\log_{1+B}^{2} N)/B^{1-\epsilon})$
 - Point query: O(log_{1+B}^ε N))
 - Range query:
 - $O((\log_{1+B} \varepsilon N) + occ/B)$

- $\varepsilon = 1/2$:
 - Updates: $O((log_B N)/\sqrt{B})$
 - Point query: O(log_B N)
 - Range query:
 - $O((log_B N) + occ/B)$