I/O data structures

B-trees and $B^{\text {® }}$-trees

Inge Li Gørtz

B-trees

Elements in leaves in sorted order: between $B / 2$ and B in each leaf

- Operations
- insert(k, v)
- delete(k)
- $\mathrm{v}=\operatorname{search}(\mathrm{k})$
- $\left[\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots\right]=$ range-query $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$

B-trees

Elements in leaves in sorted order: between $B / 2$ and B in each leaf

- A node/leaf can be stored in O(1) blocks.
- Search uses $\mathrm{O}\left(\log _{\mathrm{B}} \mathrm{N}\right)$ I/Os.

B-trees

Elements in leaves in sorted order: between $B / 2$ and B in each leaf

- Range query $\left[\mathrm{q}_{1}, \mathrm{q}_{2}\right]$:
- search down T for q_{1} and q_{2} (or successor and predecessor).
- report the elements in the leaves between the leaves containing (successor of) q_{1} and (predecessor of) q_{2}.
- \#|/Os = O(log_B N + occ/B).

Insertion in B-tree

- Insert(k, v)

- search for relevant leaf u and insert (k,v) in u.
- If u now contains B+1 elements:
- split it into two leaves u^{\prime} and $u^{\prime \prime}$.
- update parent(u)
- If parent(u) now has degree B+1 recursively split it.
- If root split: add a new root node with degree 2 (height of tree grows)
- Example. B=5. Insert(24, v)

Insertion in B-tree

- Insert(k, v)

- search for relevant leaf u and insert (k,v) in u.
- If u now contains B+1 elements:
- split it into two leaves u^{\prime} and $u^{\prime \prime}$.
- update parent(u)
- If parent(u) now has degree B+1 recursively split it.
- If root split: add a new root node with degree 2 (height of tree grows)
- Example. $\mathrm{B}=6 . \operatorname{Insert}(18, \mathrm{v})$

Insertion in B-tree

- Insert(k, v)

- search for relevant leaf u and insert (k,v) in u.
- If u now contains B+1 elements:
- split it into two leaves u^{\prime} and $u^{\prime \prime}$.
- update parent(u)
- If parent(u) now has degree B+1 recursively split it.
- If root split: add a new root node with degree 2 (height of tree grows)
- \#I/Os $=\mathrm{O}\left(\log _{\mathrm{B}} \mathrm{N}\right)$

Deletion in B-tree

- Delete(k)

- search for relevant leaf u and delete element with key k in u .
- If u now contains B/2-1 elements:
- merge u with its sibling u^{\prime}. If this results in u containing more than B elements split it into two leaves.
- update parent(u)
- If parent(u) now has degree B/2 - 1 recursively merge it.
- If root has degree 1: delete root (height decreases)
- Example. B=6. Delete(24)

Deletion in B-tree

- Delete(k)

- search for relevant leaf u and delete element with key k in u .
- If u now contains B/2-1 elements:
- merge u with its sibling u^{\prime}. If this results in u containing more than B elements split it into two leaves.
- update parent(u)
- If parent(u) now has degree B/2 - 1 recursively merge it.
- If root has degree 1: delete root (height decreases)
- Example. B=6. Delete(18)

Deletion in B-tree

- Delete(k)

- search for relevant leaf u and delete element with key k in u .
- If u now contains B/2-1 elements:
- merge u with its sibling u^{\prime}. If this results in u containing more than B elements split it into two leaves.
- update parent(u)
- If parent(u) now has degree B/2-1 recursively merge it.
- If root has degree 1: delete root (height decreases)
- Example. B= 6. Delete(18)

Deletion in B-tree

- Delete(k)

- search for relevant leaf u and delete element with key k in u.
- If u now contains $\mathrm{B} / 2-1$ elements:
- merge u with its sibling u^{\prime}. If this results in u containing more than B elements split it into two leaves.
- update parent(u)
- If parent(u) now has degree $\mathrm{B} / 2-1$ recursively merge it.
- If root has degree 1: delete root (height decreases)
- \#l/Os = $\mathrm{O}\left(\log _{\mathrm{B}} \mathrm{N}\right)$

(a,b)-trees

Elements in leaves in sorted order: between a and b in each leaf

- Operations
- insert(k, v)
- delete(k)
- search(k)
- $v=$ range-query (k)
- $\left[\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots\right]=$ range-query $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$

a B-tree is an (a, b)-tree with $a, b=\Theta(B)$

Amortized updates in (a,b)trees

- If $b \geq 2 a$ then the number of rebalancing operations caused by an update $\mathrm{O}(1 / \mathrm{a})$ amortized

B^{ε} trees

- For $0 \leq \varepsilon \leq 1$:
- Updates: $\mathrm{O}\left(\left(\log _{1+\mathrm{B}^{\varepsilon}} \mathrm{N}\right) / \mathrm{B}^{1-\varepsilon}\right)$
- Point query: $\left.O\left(\log _{1+B}{ }^{\varepsilon} N\right)\right)$
- Range query:
- $O\left(\left(\log _{1+B}{ }^{\varepsilon} N\right)+o c c / B\right)$
- $\varepsilon=1 / 2$:
- Updates: $O\left(\left(\log _{B} N\right) / \sqrt{ } B\right)$
- Point query: $\mathrm{O}\left(\log _{\mathrm{B}} \mathrm{N}\right)$
- Range query:
- $O\left(\left(\log _{B} N\right)+0 c c / B\right)$

