|/O data structures

B-trees and BE-trees

B-trees

branching

factor of root:
[2,B]

Height logs N branching

m factor: (B/2,B]

Elements in leaves in sorted order: between B/2 and B in each leaf

A node/leaf can be stored in

O(1) blocks. B-1 pivot elements

Search uses O(logg N) I/Os. | <107 >10and<65 >65and<83 >83

B-trees

branching
factor of root:
[2.B]
Height logs N branching
factor: (B/2,B]

Elements in leaves in sorted order: between B/2 and B in each leaf

-+ Operations

+ insert(k, v) [w]e[=] B1pivotelements

- delete(k)

<10 > 10 and < 65 > 65 and < 83 > 83
+ v = search(k)

+ [vq, Vo,...] = range-query(kq,ks)

B-trees

branching
factor of root:
[2,B]

Height logs N branching

factor: (B/2,B]
o e TN

Elements in leaves in sorted order: between B/2 and B in each leaf

Range query [g1,02]:

search down T for gy and gz (or successor and predecessor).

- report the elements in the leaves between the leaves containing
(successor of) g¢ and (predecessor of) gs.

#1/Os = O(log_B N + occ/B).

Insertion in B-tree

- Insert(k, v)
- search for relevant leaf u and insert (k,v) in u.
* If u now contains B+1 elements:
+ split it into two leaves u” and u”’.
- update parent(u)
- If parent(u) now has degree B+1 recursively split it.
- If root split: add a new root node with degree 2 (height of tree grows)

Example. B= 5. Insert(24, v)

Insertion In B-tree

- Insert(k, v)
- search for relevant leaf u and insert (k,v) in u.
- If u now contains B+1 elements:
- split it into two leaves u” and u”’.
+ update parent(u)
- If parent(u) now has degree B+1 recursively split it.

- If root split: add a new root node with degree 2 (height of tree grows)

- #1/Os = O(log, N)

Insertion in B-tree

- Insert(k, v)

- search for relevant leaf u and insert (k,v) in u.
* If u now contains B+1 elements:
+ split it into two leaves u” and u”’.
- update parent(u)
- If parent(u) now has degree B+1 recursively split it.
- If root split: add a new root node with degree 2 (height of tree grows)

Example. B= 6. Insert(18, v)

VA

10 | 24 | 6 | 83

\

[o[e = [=]

Deletion In B-tree

- Delete(k)

- search for relevant leaf u and delete element with key k in u.
* If u now contains B/2 - 1 elements

- merge u with its sibling u’. If this results in u containing more than B elements split

it into two leaves.
* update parent(u)
- If parent(u) now has degree B/2 - 1 recursively merge it.
- If root has degree 1: delete root (height decreases)

Example. B= 6. Delete(24)

Deletion in B-tree

- Delete(k)
- search for relevant leaf u and delete element with key k in u.

* If u now contains B/2 - 1 elements:
- merge u with its sibling u”. If this results in u containing more than B elements split
it into two leaves.
* update parent(u)
- If parent(u) now has degree B/2 - 1 recursively merge it.
« If root has degree 1: delete root (height decreases)

Example. B= 6. Delete(18)

\

] EElE]

Deletion In B-tree

- Delete(k)

- search for relevant leaf u and delete element with key k in u.

- If u now contains B/2 - 1 elements:
+ merge u with its sibling u’. If this results in u containing more than B elements

split it into two leaves.

- update parent(u)
- If parent(u) now has degree B/2 - 1 recursively merge it.

- If root has degree 1: delete root (height decreases)

- #l/Os = O(IogB N)

Deletion in B-tree

- Delete(k)

- search for relevant leaf u and delete element with key k in u.

* If u now contains B/2 - 1 elements
- merge u with its sibling u’. If this results in u containing more than B elements split
it into two leaves.
* update parent(u)
- If parent(u) now has degree B/2 - 1 recursively merge it.
+ If root has degree 1: delete root (height decreases)

Example. B= 6. Delete(18))

10 | 26 65 | &

\

(a,b)-trees

branching

factor of root:
[2,0]

Height loga N [a,b]

branching factor:

Elements in leaves in sorted order: between a and b in each leaf

+ Operations

- insert(k, v)

between a-1 and

- delete(k) b-1 pivot elements

+ search(k
() <10 > 10 and < 65 > 65 and < 83 > 83
- v = range-query(k)

- V4, Va....] = range-query(ky k,) a B-tree is an (a,b)-tree with a,b=0(B)

Amortized updates in (a,b)-
trees

- If b > 2a then the number of rebalancing
operations caused by an update O(1/a)

amortized - ForO<g<1: - g=1/2:

. Updates: O((log;s" N)B") - Updates: O((logs N)/V/B)
- Point query: O(log;,g? N)) - Point query: O(logg N)
- Range query: - Range query:

- O((log4,g® N)+ occ/B) - O((logg N)+ occ/B)

