Approximation Algorithms

02282
Inge Li Gørtz

Approximation algorithms

- Fast. Cheap. Reliable. Choose two.
- NP-hard problems: choose 2 of
- optimal
- polynomial time
- all instances
- Approximation algorithms. Trade-off between time and quality.
- Let $A(I)$ denote the value returned by algorithm A on instance I. Algorithm A is an $a-$ approximation algorithm if for any instance I of the optimization problem:
- A runs in polynomial time
- A returns a valid solution
- $A(I) \leq a \cdot$ OPT, where $a \geq 1$, for minimization problems
- $A(I) \geq a \cdot O P T$, where $a \leq 1$, for maximization problems

Load balancing

Scheduling on identical parallel machines

\square
\square

- n jobs to be scheduled on m identical machines.
- Each job has a processing time t_{j}.
- Once a job has begun processing it must be completed.

- Goal. Schedule all jobs so as to minimize the maximum load (makespan):

$$
\operatorname{minimize} T=\max _{i=1 \ldots n} T_{j}
$$

Simple greedy (list scheduling)

\square
\square
\square

- Simple greedy. Process jobs in any order. Assign next job on list to machine with smallest current load.
- The greedy algorithm above is a 2 -approximation algorithm:
- polynomial time \checkmark
- valid solution \checkmark
- factor 2

Approximation factor

\square
\square

- Lower bounds:
- Each job must be processed:

$$
T^{*} \geq \max _{j} t_{j}
$$

- There is a machine that is assigned at least average load:

$$
T^{*} \geq \frac{1}{m} \sum_{j} t_{j}
$$

Approximation factor

- i: job finishes last.
- All other machines busy until start time s of i. $\left(s=T_{i}-t_{i}\right)$
- Partition schedule into before and after s.
- After $\leq \mathrm{T}^{\star}$.
- Before:
- All machines busy => total amount of work $=\mathrm{m} \cdot \mathrm{s}$:

$$
m \cdot s \leq \sum_{i} t_{i} \quad \Rightarrow \quad s \leq \frac{1}{m} \sum_{i} t_{i} \leq T^{*}
$$

- Length of schedule $\leq 2 \mathrm{~T}^{*}$.

Longest processing time rule

\square

- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.

Longest processing time rule

\square
\square
\square

- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
- LPT is a is a $3 / 2$-approximation algorithm:
- polynomial time \checkmark
- valid solution
- factor $3 / 2$

Longest processing time rule: factor $3 / 2$

- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
- Assume $\mathrm{t}_{1} \geq \ldots \geq \mathrm{t}_{\mathrm{n}}$.
- Lower bound: If $n>m$ then $T^{*} \geq 2 t_{m+1}$.
- Factor $3 / 2$:
- If $\mathrm{m} \leq \mathrm{n}$ then optimal.
- Before $\leq \mathrm{T}^{*}$
- After: i job that finishes last.
- $\mathrm{t}_{\mathrm{i}} \leq \mathrm{t}_{\mathrm{m}+1} \leq \mathrm{T}^{\star} / 2$.
- $\mathrm{T} \leq \mathrm{T}^{*}+\mathrm{T}^{*} / 2 \leq 3 / 2 \mathrm{~T}^{*}$.
- Tight?

Longest processing time rule: factor 4/3

- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
- Assume $\mathrm{t}_{1} \geq \ldots$. t_{n}.
- Assume wlog that smallest job finishes last.
- If $t_{n} \leq T^{*} / 3$ then $T \leq 4 / 3 T^{*}$.
- If $t_{n}>T^{*} / 3$ then each machine can process at most 2 jobs in OPT.
- Lemma. For any input where the processing time of each job is more than a third of the optimal makespan, LPT computes an optimal schedule.
- Theorem. LPT is a 4/3-approximation algorithm.

Traveling salesman problem

Traveling Salesman Problem (TSP)

\bullet

- Set of cities $\{1, \ldots, n\}$
- $\mathrm{c}_{\mathrm{ij}} \geq 0$: cost of traveling from i to j .
- C_{ij} a metric:
- $\mathrm{Ciil}_{\mathrm{i}}=0$
- $\mathrm{C}_{\mathrm{ij}}=\mathrm{C}_{\mathrm{ji}}$
- $\mathrm{C}_{\mathrm{ij}} \leq \mathrm{C}_{\mathrm{ik}}+\mathrm{C}_{\mathrm{kj}} \quad$ (triangle inequality)
- Goal: Find a tour of minimum cost visiting every city exactly once.

Traveling Salesman Problem (TSP)

- Set of cities $\{1, \ldots, n\}$
- $\mathrm{c}_{\mathrm{ij}} \geq 0$: cost of traveling from i to j .
- c_{ij} a metric:
- $\mathrm{Ciil}_{\mathrm{i}}=0$
- $\mathrm{C}_{\mathrm{ij}}=\mathrm{C}_{\mathrm{ji}}$
- $\mathrm{C}_{\mathrm{ij}} \leq \mathrm{C}_{\mathrm{ik}}+\mathrm{C}_{\mathrm{kj}}$
- Goal: Find a tour of minimum cost visiting every city exactly once.

Double tree algorithm

- MST is a lower bound on TSP.
- Deleting an edge e from OPT gives a spanning tree.
- OPT \geq OPT - $\mathrm{C}_{\mathrm{e}} \geq$ MST.
- Eulerian graph
- Graph Eulerian if there is a traversal of all edges visiting every edge exactly once.
- G Eulerian iff G connected and all nodes have even degree.
- Can construct Euler tour in polynomial time.

Double tree algorithm

- Double tree algorithm
- Compute MST T.
- Double edges of T
- Construct Euler tour τ

Double tree algorithm

- Double tree algorithm
- Compute MST T.
- Double edges of T
- Construct Euler tour τ

Double tree algorithm

- Double tree algorithm
- Compute MST T.
- Double edges of T
- Construct Euler tour τ
- Shortcut τ such that each vertex only visited once (τ^{\prime})
- length $\left(\tau^{\prime}\right) \leq \operatorname{length}(\tau)=2$ weight $(T) \leq 2$ OPT.
- The double tree algorithm is a 2 -approximation algorithm for TSP.

Christofides’ algorithm

- Christofides' algorithm
- Compute MST T.
- No need to double all edges:
- Consider set O of all odd degree vertices in T.
- Find minimum cost perfect matching M on O .
- Matching: no edges share an endpoint.
- Perfect: all vertices matched.
- Perfect matching on O exists: Number of odd vertices in a graph is even.
- $\mathrm{T}+\mathrm{M}$ is Eulerian (all vertices have even degree).

Christofides’ algorithm

- Christofides’ algorithm
- Compute MST T.
- $\mathrm{O}=\{$ odd degree vertices in T$\}$.
- Compute minimum cost perfect matching M on O.
- Construct Euler tour $\mathbf{\tau}$
- Shortcut such that each vertex only visited once (τ^{\prime})

Christofides’ algorithm

- Christofides' algorithm
- Compute MST T.
- $\mathrm{O}=\{$ odd degree vertices in T$\}$.
- Compute minimum cost perfect matching M on O.
- Construct Euler tour $\mathbf{\tau}$
- Shortcut such that each vertex only visited once (τ^{\prime})

Christofides’ algorithm

- Christofides' algorithm
- Compute MST T.
- $\mathrm{O}=\{$ odd degree vertices in T$\}$.
- Compute minimum cost perfect matching M on O.
- Construct Euler tour $\mathbf{\tau}$
- Shortcut such that each vertex only visited once (τ^{\prime})
- length $\left(\tau^{\prime}\right) \leq \operatorname{length}(\tau)=$ weight $(T)+$ weight $(M) \leq$ OPT + weight (M).

Analysis of Christofides' algorithm

- weight $(\mathrm{M}) \leq \mathrm{OPT} / 2$.
- $\mathrm{OPT}_{\mathrm{o}}=\mathrm{OPT}$ restricted to O .
- $\mathrm{OPT}_{0} \leq \mathrm{OPT}$.

Analysis of Christofides' algorithm

- weight $(\mathrm{M}) \leq \mathrm{OPT} / 2$.
- $\mathrm{OPT}_{\mathrm{o}}=\mathrm{OPT}$ restricted to O .
- $\mathrm{OPT}_{\circ} \leq \mathrm{OPT}$.

Analysis of Christofides' algorithm

- weight $(\mathrm{M}) \leq \mathrm{OPT} / 2$.
- $\mathrm{OPT}_{\circ}=\mathrm{OPT}$ restricted to O .
- $\mathrm{OPT}_{\mathrm{o}} \leq \mathrm{OPT}$.
- can partition OPTo into two perfect matchings O_{1} and O_{1}.
- weight $(\mathrm{M}) \leq \min \left(\operatorname{cost}\left(\mathrm{O}_{1}\right), \operatorname{cost}\left(\mathrm{O}_{2}\right)\right) \leq \mathrm{OPT} / 2$.
- length $\left(\tau^{\prime}\right) \leq \operatorname{length}(\tau)=$ weight $(T)+$ weight $(M) \leq$ OPT + OPT/2 = 3/2 OPT.
- Christofides' algorithm is a 3/2-approximation algorithm for TSP.

