
k-center



• Input. An integer k and a complete, undirected graph G=(V,E), with distance d(i,j) 
between each pair of vertices i,j ∈ V.


• d is a metric:

• dist(i,i) = 0

• dist(i,j) = dist(j,i)

• dist(i,l) ≤ dist(i,j) + dist(j,l) 


• Goal. Choose a set S ⊆ V , |S| = k, of k centers so as to minimize the maximum 
distance of a vertex to its closest center.


• Covering radius. Maximum distance of a vertex to its closest center.

The k-center problem

S = argminS⊆V,|S|=k maxi∈V dist(i,S)
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• Greedy algorithm.

• Pick arbitrary i in V.

• Set S = {i}

• while |S| < k do


• Find vertex j farthest away from any cluster center in S

• Add j to S


• Greedy is a 2-approximation algorithm:

• polynomial time

• valid solution

• factor 2

k-center: Greedy algorithm
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• r* optimal radius.

• Show all vertices within distance 2r* from a center.

• Consider optimal clusters. 2 cases.


• Algorithm picked one center in each optimal 
cluster

• distance from any vertex to its closest center 
≤ 2r* (triangle inequality)


• Some optimal cluster does not have a center. 

• Some cluster have more than one center.

• distance between these two centers ≤ 2r*.

• when second center in same cluster picked it 

was the vertex farthest away from any center. 

• distance from any vertex to its closest center 

at most 2r*. 

k-center: analysis greedy algorithm
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k-center
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• Assume we know the optimum covering radius r.

• Bottleneck algorithm.


• Set  R := V and S := Ø. 

• while R ≠ Ø do


• Pick arbitrary i in R.

• Add j to S

• Remove all vertices with d(j,v) ≤ 2r from R.


• Example: k= 3. r = 4.

Bottleneck algorithm
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• r* optimal radius.

• Covering radius is at most 2r*.

• Show that: We cannot pick more than k centers:


• We can pick at most one in each optimal cluster: 

• Distance between two nodes in same optimal cluster ≤ 2r.*

• When we pick a center in a optimal cluster all nodes in same optimal 

cluster is removed.

Analysis bottleneck algorithm
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• Assume we know the optimum covering radius r.

• Example: k= 3. r = 4.

• Analysis.


• Covering radius is at most 2.

• Algorithm picks more than k centers => the optimum covering radius is > r.


• If algorithm pick more than k centers then it picked more than one in some 
OPT cluster.


• If r* ≤ r we can pick at most one in each optimum cluster. 


• Can “guess” optimal covering radius (only a polynomial number of possible values). 

Bottleneck algorithm
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• r* optimal radius.

• Can use algorithm to “guess” r* (at most n2 values).

• If algorithm picked more than k centers then r* > r.


• If algorithm picked more than k centers then it picked more than one in some 
optimal cluster.


• Distance between two nodes in same optimal cluster ≤ 2r.*

• If more than one in some optimal cluster then 2r < 2r*. 

Analysis bottleneck algorithm
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• Assume we don’t know the optimum covering radius r.

• Example: k= 3.

• Try with r=2:

Bottleneck algorithm
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• Still vertices left after picking 3 centers => r* > 2.



• Assume we don’t know the optimum covering radius r.

• Example: k= 3.

• Try with r=3:

Bottleneck algorithm

2 3
7

4
1

5 4

10
6

8

5

5
4

7
6 2

5

3

• All vertices deleted after picking 3 centers

• Know r* ≥ 3 (from last round).

• Max distance from a vertex to a center is 2r = 6 ≤ 2r*.



• There is no α-approximation algorithm for the k-center problem for α < 2 unless 
P=NP.


• Proof. Reduction from dominating set.

• Dominating set. Given G=(V,E) and k. Is there a (dominating) set S ⊆ V of size k, such 

that each vertex is either in S or adjacent to a vertex in S?

• Given instance of the dominating set problem construct instance of k-center 

problem:

• Complete graph G’ on V.

• All edges from E has weight 1, all new edges have weight 2.

• Radius in k-center instance 1 or 2.

• G has an dominating set of size k <=> opt solution to the k-center problem has 

radius 1.

• Use α-approximation algorithm A: 


• opt = 1 => A returns solution with radius at most α < 2.

• opt = 2 => A returns solution with radius at least 2.

• Can use A to distinguish between the 2 cases.

k-center: Inapproximability 


