
k-center

• Input. An integer k and a complete, undirected graph G=(V,E), with distance d(i,j)
between each pair of vertices i,j ∈ V.

• d is a metric:

• dist(i,i) = 0

• dist(i,j) = dist(j,i)

• dist(i,l) ≤ dist(i,j) + dist(j,l)

• Goal. Choose a set S ⊆ V , |S| = k, of k centers so as to minimize the maximum
distance of a vertex to its closest center.

• Covering radius. Maximum distance of a vertex to its closest center.

The k-center problem

S = argminS⊆V,|S|=k maxi∈V dist(i,S)

2 3
7

4
1

5 4

10
6

8

5

5
4

7
6 2

5

3

• Greedy algorithm.

• Pick arbitrary i in V.

• Set S = {i}

• while |S| < k do

• Find vertex j farthest away from any cluster center in S

• Add j to S

• Greedy is a 2-approximation algorithm:

• polynomial time

• valid solution

• factor 2

k-center: Greedy algorithm

2 3
7

4
1

5 4

10
6

8

5

5
4

7
6 2

5

3

✓

✓

• r* optimal radius.

• Show all vertices within distance 2r* from a center.

• Consider optimal clusters. 2 cases.

• Algorithm picked one center in each optimal
cluster

• distance from any vertex to its closest center
≤ 2r* (triangle inequality)

• Some optimal cluster does not have a center.

• Some cluster have more than one center.

• distance between these two centers ≤ 2r*.

• when second center in same cluster picked it

was the vertex farthest away from any center.

• distance from any vertex to its closest center

at most 2r*.

k-center: analysis greedy algorithm

≤r*
≤r*

≤2r*

≤r*

≤r*
≤2r*

≤2r*

k-center

2 3
7

4
1

5 4

10
6

8

5

5
4

7
6 2

5

3

• Assume we know the optimum covering radius r.

• Bottleneck algorithm.

• Set R := V and S := Ø.

• while R ≠ Ø do

• Pick arbitrary i in R.

• Add j to S

• Remove all vertices with d(j,v) ≤ 2r from R.

• Example: k= 3. r = 4.

Bottleneck algorithm

2 3
7

4
1

5 4

10
6

8

5

5
4

7
6 2

5

3

• r* optimal radius.

• Covering radius is at most 2r*.

• Show that: We cannot pick more than k centers:

• We can pick at most one in each optimal cluster:

• Distance between two nodes in same optimal cluster ≤ 2r.*

• When we pick a center in a optimal cluster all nodes in same optimal

cluster is removed.

Analysis bottleneck algorithm

≤r*
≤r*

≤2r*

2r

• Assume we know the optimum covering radius r.

• Example: k= 3. r = 4.

• Analysis.

• Covering radius is at most 2.

• Algorithm picks more than k centers => the optimum covering radius is > r.

• If algorithm pick more than k centers then it picked more than one in some
OPT cluster.

• If r* ≤ r we can pick at most one in each optimum cluster.

• Can “guess” optimal covering radius (only a polynomial number of possible values).

Bottleneck algorithm

2 3
7

4
1

5 4

10
6

8

5

5
4

7
6 2

5

3

≤r*
≤r*

≤2r*

• r* optimal radius.

• Can use algorithm to “guess” r* (at most n2 values).

• If algorithm picked more than k centers then r* > r.

• If algorithm picked more than k centers then it picked more than one in some
optimal cluster.

• Distance between two nodes in same optimal cluster ≤ 2r.*

• If more than one in some optimal cluster then 2r < 2r*.

Analysis bottleneck algorithm

≤r*
≤r*

≤2r*

• Assume we don’t know the optimum covering radius r.

• Example: k= 3.

• Try with r=2:

Bottleneck algorithm

2 3
7

4
1

5 4

10
6

8

5

5
4

7
6 2

5

3

• Still vertices left after picking 3 centers => r* > 2.

• Assume we don’t know the optimum covering radius r.

• Example: k= 3.

• Try with r=3:

Bottleneck algorithm

2 3
7

4
1

5 4

10
6

8

5

5
4

7
6 2

5

3

• All vertices deleted after picking 3 centers

• Know r* ≥ 3 (from last round).

• Max distance from a vertex to a center is 2r = 6 ≤ 2r*.

• There is no α-approximation algorithm for the k-center problem for α < 2 unless
P=NP.

• Proof. Reduction from dominating set.

• Dominating set. Given G=(V,E) and k. Is there a (dominating) set S ⊆ V of size k, such

that each vertex is either in S or adjacent to a vertex in S?

• Given instance of the dominating set problem construct instance of k-center

problem:

• Complete graph G’ on V.

• All edges from E has weight 1, all new edges have weight 2.

• Radius in k-center instance 1 or 2.

• G has an dominating set of size k <=> opt solution to the k-center problem has

radius 1.

• Use α-approximation algorithm A:

• opt = 1 => A returns solution with radius at most α < 2.

• opt = 2 => A returns solution with radius at least 2.

• Can use A to distinguish between the 2 cases.

k-center: Inapproximability

