k-center

The k-center problem

- Input. An integer k and a complete, undirected graph G=(V,E), with distance d(i,j) between each pair of vertices i,j ∈ V.
- d is a metric:
 - dist(i,i) = 0
 - dist(i,j) = dist(j,i)
 - dist(i,l) \leq dist(i,j) + dist(j,l)
- Goal. Choose a set S ⊆ V, |S| = k, of k centers so as to minimize the maximum distance of a vertex to its closest center.

 $S = argmin_{S \subseteq V, |S|=k} max_{i \in V} dist(i, S)$

• Covering radius. Maximum distance of a vertex to its closest center.

k-center: Greedy algorithm

- Greedy algorithm.
 - Pick arbitrary i in V.
 - Set S = {i}
 - while |S| < k do
 - Find vertex j farthest away from any cluster center in S
 - Add j to S

- Greedy is a 2-approximation algorithm:
 - polynomial time \checkmark
 - valid solution \checkmark
 - factor 2

k-center: analysis greedy algorithm

- r* optimal radius.
- Show all vertices within distance 2r* from a center.
- Consider optimal clusters. 2 cases.
 - Algorithm picked one center in each optimal cluster
 - distance from any vertex to its closest center ≤ 2r* (triangle inequality)

- Some optimal cluster does not have a center.
 - Some cluster have more than one center.
 - distance between these two centers $\leq 2r^*$.
 - when second center in same cluster picked it was the vertex farthest away from any center.
 - distance from any vertex to its closest center at most 2r*.

k-center

- Assume we know the optimum covering radius r.
- Bottleneck algorithm.
 - Set R := V and $S := \emptyset$.
 - while $R \neq \emptyset$ do
 - Pick arbitrary i in R.
 - Add j to S
 - Remove all vertices with $d(j,v) \le 2r$ from R.

• Example: k= 3. r = 4.

Analysis bottleneck algorithm

- r* optimal radius.
- Covering radius is at most 2r*.
- Show that: We cannot pick more than k centers:
 - We can pick at most one in each optimal cluster:
 - Distance between two nodes in same optimal cluster $\leq 2r.^*$
 - When we pick a center in a optimal cluster all nodes in same optimal cluster is removed.

- Assume we know the optimum covering radius r.
- Example: k= 3. r = 4.
- Analysis.
 - Covering radius is at most 2.
 - Algorithm picks more than k centers => the optimum covering radius is > r.
 - If algorithm pick more than k centers then it picked more than one in some OPT cluster.
 - If $r^* \leq r$ we can pick at most one in each optimum cluster.
- Can "guess" optimal covering radius (only a polynomial number of possible values).

Analysis bottleneck algorithm

- r* optimal radius.
- Can use algorithm to "guess" r* (at most n² values).
- If algorithm picked more than k centers then $r^* > r$.
 - If algorithm picked more than k centers then it picked more than one in some optimal cluster.
 - Distance between two nodes in same optimal cluster $\leq 2r.^*$
 - If more than one in some optimal cluster then $2r < 2r^*$.

- Assume we don't know the optimum covering radius r.
- Example: k= 3.
- Try with r=2:
 - Still vertices left after picking 3 centers $=> r^* > 2$.

- Assume we don't know the optimum covering radius r.
- Example: k= 3.
- Try with r=3:

- All vertices deleted after picking 3 centers
- Know $r^* \ge 3$ (from last round).
- Max distance from a vertex to a center is $2r = 6 \le 2r^*$.

k-center: Inapproximability

- There is no α -approximation algorithm for the k-center problem for α < 2 unless P=NP.
- **Proof.** Reduction from dominating set.
- Dominating set. Given G=(V,E) and k. Is there a (dominating) set S ⊆ V of size k, such that each vertex is either in S or adjacent to a vertex in S?
- Given instance of the dominating set problem construct instance of k-center problem:
 - Complete graph G' on V.
 - All edges from E has weight 1, all new edges have weight 2.
 - Radius in k-center instance 1 or 2.
 - G has an dominating set of size k <=> opt solution to the k-center problem has radius 1.
 - Use α-approximation algorithm A:
 - opt = 1 => A returns solution with radius at most α < 2.
 - opt = $2 \Rightarrow$ A returns solution with radius at least 2.
 - Can use A to distinguish between the 2 cases.