k-center

k-center: Greedy algorithm

- · Greedy algorithm.
 - · Pick arbitrary i in V.
 - Set S = {i}
 - while |S| < k do
 - · Find vertex j farthest away from any cluster center in S
 - Add j to S

- · Greedy is a 2-approximation algorithm:
 - polynomial time ✓
 - valid solution
 - factor 2

The k-center problem

- Input. An integer k and a complete, undirected graph G=(V,E), with distance d(i,j) between each pair of vertices i, i ∈ V.
- · d is a metric:
 - dist(i,i) = 0
 - dist(i,j) = dist(j,i)
 - $dist(i,l) \leq dist(i,j) + dist(j,l)$
- Goal. Choose a set S ⊆ V , |S| = k, of k centers so as to minimize the maximum distance of a vertex to its closest center.

$$S = argmin_{S \subseteq V, |S| = k} max_{i \in V} dist(i,S)$$

· Covering radius. Maximum distance of a vertex to its closest center.

k-center: analysis greedy algorithm

- · r* optimal radius.
- · Show all vertices within distance 2r* from a center.
- · Consider optimal clusters. 2 cases.
 - Algorithm picked one center in each optimal cluster
 - distance from any vertex to its closest center
 ≤ 2r* (triangle inequality)

- · Some optimal cluster does not have a center.
- Some cluster have more than one center.
- distance between these two centers ≤ 2r*.
- when second center in same cluster picked it was the vertex farthest away from any center.
- distance from any vertex to its closest center at most 2r*.

k-center

Analysis bottleneck algorithm

- · r* optimal radius.
- · Covering radius is at most 2r*.
- · Show that: We cannot pick more than k centers:
 - · We can pick at most one in each optimal cluster:
 - Distance between two nodes in same optimal cluster ≤ 2r.*
 - When we pick a center in a optimal cluster all nodes in same optimal cluster is removed.

Bottleneck algorithm

- · Assume we know the optimum covering radius r.
- · Bottleneck algorithm.
 - Set R := V and S := Ø.
 - while R ≠ Ø do
 - · Pick arbitrary i in R.
 - Add j to S
 - Remove all vertices with $d(j,v) \le 2r$ from R.
- Example: k= 3. r = 4.

Bottleneck algorithm

- · Assume we know the optimum covering radius r.
- Example: k= 3. r = 4.
- · Analysis.
 - · Covering radius is at most 2.
 - Algorithm picks more than k centers => the optimum covering radius is > r.
 - If algorithm pick more than k centers then it picked more than one in some OPT cluster.
 - If $r^* \le r$ we can pick at most one in each optimum cluster.
- · Can "guess" optimal covering radius (only a polynomial number of possible values).

Analysis bottleneck algorithm

- · r* optimal radius.
- Can use algorithm to "guess" r* (at most n² values).
- If algorithm picked more than k centers then r* > r.
 - If algorithm picked more than k centers then it picked more than one in some optimal cluster.
 - Distance between two nodes in same optimal cluster ≤ 2r.*
 - If more than one in some optimal cluster then 2r < 2r*.

Bottleneck algorithm

- · Assume we don't know the optimum covering radius r.
- Example: k= 3.
- Try with r=3:

- · All vertices deleted after picking 3 centers
- Know $r^* \ge 3$ (from last round).
- Max distance from a vertex to a center is 2r = 6 ≤ 2r*.

Bottleneck algorithm

- Assume we don't know the optimum covering radius r.
- Example: k= 3.
- Try with r=2:
 - Still vertices left after picking 3 centers => r* > 2.

k-center: Inapproximability

- There is no $\alpha\text{-approximation}$ algorithm for the k-center problem for α < 2 unless P=NP.
- · Proof. Reduction from dominating set.
- Dominating set. Given G=(V,E) and k. Is there a (dominating) set $S\subseteq V$ of size k, such that each vertex is either in S or adjacent to a vertex in S?
- Given instance of the dominating set problem construct instance of k-center problem:
 - · Complete graph G' on V.
 - · All edges from E has weight 1, all new edges have weight 2.
 - · Radius in k-center instance 1 or 2.
 - G has an dominating set of size k <=> opt solution to the k-center problem has radius 1.
 - Use α-approximation algorithm A:
 - opt = 1 => A returns solution with radius at most α < 2
 - opt = 2 => A returns solution with radius at least 2.
 - · Can use A to distinguish between the 2 cases.