k-center

The k-center problem

- Input. An integer k and a complete, undirected graph $G=(V, E)$, with distance $d(i, j)$ between each pair of vertices $i, j \in V$.
- d is a metric:
- $\operatorname{dist}(\mathrm{i}, \mathrm{i})=0$
- $\operatorname{dist}(\mathrm{i}, \mathrm{j})=\operatorname{dist}(\mathrm{j}, \mathrm{i})$
- $\operatorname{dist}(\mathrm{i}, \mathrm{l}) \leq \operatorname{dist}(\mathrm{i}, \mathrm{j})+\operatorname{dist}(\mathrm{j}, \mathrm{l})$
- Goal. Choose a set $\mathrm{S} \subseteq \mathrm{V},|\mathrm{S}|=\mathrm{k}$, of k centers so as to minimize the maximum distance of a vertex to its closest center

$$
S=\operatorname{argmin}_{S \subseteq v,|S|=k} \max _{i \in V} \operatorname{dist}(\mathrm{i}, \mathrm{~S})
$$

- Covering radius. Maximum distance of a vertex to its closest center

k-center: Greedy algorithm

- Greedy algorithm.
- Pick arbitrary i in V
- Set S = \{i\}
- while $|S|<k$ do
- Find vertex j farthest away from any cluster center in S
- Add j to S
- Greedy is a 2-approximation algorithm:
- polynomial time \checkmark
- valid solution \checkmark
- factor 2

k-center: analysis greedy algorithm

- r^{*} optimal radius.
- Show all vertices within distance $2 r^{\star}$ from a center.
- Consider optimal clusters. 2 cases.
- Algorithm picked one center in each optimal cluster
- distance from any vertex to its closest center $\leq 2 r^{*}$ (triangle inequality)
- Some optimal cluster does not have a center.
- Some cluster have more than one center.
- distance between these two centers $\leq 2 r^{*}$.
- when second center in same cluster picked it was the vertex farthest away from any center.
- distance from any vertex to its closest center at most $2 r^{\star}$.

k-center

Analysis bottleneck algorithm

- r^{*} optimal radius.

- Covering radius is at most $2 r^{\star}$
- Show that: We cannot pick more than k centers
- We can pick at most one in each optimal cluster:
- Distance between two nodes in same optimal cluster $\leq 2 r$. ${ }^{*}$
- When we pick a center in a optimal cluster all nodes in same optima cluster is removed.

Bottleneck algorithm

- Assume we know the optimum covering radius r .
- Bottleneck algorithm.
- Set R $:=\mathrm{V}$ and $\mathrm{S}:=\varnothing$
- while $R \neq \varnothing$ do
- Pick arbitrary i in R.
- Add j to S
- Remove all vertices with $\mathrm{d}(\mathrm{j}, \mathrm{v}) \leq 2 \mathrm{r}$ from R .
- Example: k=3. $\mathrm{r}=4$.

Bottleneck algorithm

- Assume we know the optimum covering radius r.
- Example: $k=3 . r=4$.
- Analysis.
- Covering radius is at most 2 .
- Algorithm picks more than k centers $=>$ the optimum covering radius is $>\mathrm{r}$.
- If algorithm pick more than k centers then it picked more than one in some OPT cluster.
- If $r^{*} \leq r$ we can pick at most one in each optimum cluster
- Can "guess" optimal covering radius (only a polynomial number of possible values)

Analysis bottleneck algorithm

- r* optimal radius.
- Can use algorithm to "guess" r^{*} (at most n^{2} values).
- If algorithm picked more than k centers then $r^{*}>r$.

If algorithm picked more than k centers then it picked more than one in some optimal cluster.

- Distance between two nodes in same optimal cluster $\leq 2 r$.
- If more than one in some optimal cluster then $2 r<2 r^{*}$

Bottleneck algorithm

- Assume we don't know the optimum covering radius r.
- Example: $\mathrm{k}=3$
- Try with $\mathrm{r}=3$:

- All vertices deleted after picking 3 centers
- Know $r^{*} \geq 3$ (from last round).
- Max distance from a vertex to a center is $2 r=6 \leq 2 r^{\star}$

Bottleneck algorithm

- Assume we don't know the optimum covering radius r.
- Example: $\mathrm{k}=3$
- Try with $r=2$:
- Still vertices left after picking 3 centers $=>r^{*}>2$.

k-center: Inapproximability

- There is no a-approximation algorithm for the k-center problem for $a<2$ unless $\mathrm{P}=\mathrm{NP}$.
- Proof. Reduction from dominating set.
- Dominating set. Given $G=(\mathrm{V}, \mathrm{E})$ and k . Is there a (dominating) set $\mathrm{S} \subseteq \mathrm{V}$ of size k , such that each vertex is either in S or adjacent to a vertex in S ?
- Given instance of the dominating set problem construct instance of k-cente problem:
- Complete graph G' on V.
- All edges from E has weight 1 , all new edges have weight 2.
- Radius in k-center instance 1 or 2.
- G has an dominating set of size $\mathrm{k}<=>$ opt solution to the k -center problem has radius 1 .
- Use a-approximation algorithm A:
- opt $=1=>$ A returns solution with radius at most $a<2$
- opt $=2=>$ A returns solution with radius at least 2.
- Can use A to distinguish between the 2 cases.

