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1. INTRODUCTION

Universal hashing is theory at its best! Hashing started out as a purely heuristic
method for implementing symbol tables. It moved into the hardcore theory of
algorithms with Carter and Wegman’s analysis of the concept of universality. It
went on to play an important role in several of the most important constructions
in abstract complexity theory and cryptography. And now, these constructions
start to creep back into practice. Thus, having matured inside theory, hash-
ing gets applied in ways the original symbol table implementors could not have
dreamed of! In this note, we track the exciting career of the hash function.

2. THE PREHISTORY OF UNIVERSAL HASHING

The heuristic concept of hashing, as is nowadays known to most (all?) program-
mers, was introduced by Dumey in 1956 [4]. Tt was introduced as a solution to
the symbol table problem (nowadays called the dictionary problem).

In the dictionary problem, we are given a sequence of INSERT(k,z), DELETE(k),
and LOOKUP(k) operations which must be performed on-line (i.e. one operation
must be completely performed, before the next is considered) on an initially
empty set S. INSERT(k,r) inserts the key k& with associated information z into
the set, DELETE(k) deletes the key k and its associated information from the set,
and LookuP(k) returns the information associated with k, if k is indeed in the
set.

For simplicity in the analysis which is to come, we assume that single keys and
single pieces of associated information fit into single machine words, but that two
keys or two pieces of information do not fit into a machine word. This is often
called, believe it or not, the transdichotomous model of computation.

Exercise 1 (for language freaks) Ezxplain the term transdichotomous.

The goal is to perform the operations while minimizing the time and space used.
The space used is measured in terms of memory registers. In general, we aim for



linear space, i.e. space comparable to the size of the set being stored. Of course,
the size of the set varies as the operations are performed, and this causes some
complications in the solutions we’ll look at. For simplicity, we will assume that
we know a single upper bound N on the size of the set at all times, and we will
allow ourselves to use O(N) registers, even when the set is much smaller (but see
Problem 19).

Exercise 2 Recall some solutions to the dictionary problem. Do they use linear
space? How fast are they?

Dumey’s solution to the dictionary problem was the following. Assume the
keys and pieces of information are both taken from the universe U. Pick some
“crazy”, “chaotic”, “random” function h (the hash function) mapping U to
{1,..., N}. Initialize an array A[1..N]. At any given time, in A[i] we keep a
linked list containing the keys k currently in the set, for which h(k) = i. For each
key we attach the associated information. This is called chained hashing. There

are other kinds of hashing which we’ll happily ignore.
Exercise 3 (for language freaks) Why hash-function?

Exercise 4 Convince yourself that it is fairly simple to program this data struc-
ture, not much worse than implementing a single linked list.

Intuitively, it is fairly clear why this solution should work well. If the function
h is indeed “crazy”, “chaotic” and “random”, mapping our set S to {1,..., N}
using h should behave as if we were just distributing elements of S at random in
N buckets. Since the size of S is at most N, we should expect the buckets to be
quite small in general. As the crazy function, Dumey suggested h(z) = x mod p
for p a prime.

Exercise 5 Why a prime??

Hashing is widely used in practice and experience shows that it does indeed work
very welll But what about a rigorous analysis? It is easy to see that the above
intuition cannot be formalized so that the argument above will be true for all
sets S.

Exercise 6 Why not?

Even given the the answer to exercise 6, hashing was intensely analyzed in the
two decades following Dumey’s invention. The problem exposed in exercise 6 was
dealt with in two different ways.

1. In some papers, it is assumed that the set to be stored is not a worst case



set. Instead, we assume that it is chosen according to some probability
distribution or has some structural property we can explore.

2. In some papers, we do not assume anything about the set S, but we assume
that h really is a random function, i.e. chosen uniformly at random from
the set of all functions mapping U to {1,..., N}.

There are papers of both kinds with deep and beautiful mathematics. However,
both kinds do leave you a bit nervous about the relevance or the meaningfulness
of the results. The first kind is based on assumptions on the input set which
may be hard or impossible to guarantee in practice, and the second is simply
based on a false assumption! No matter how long time you stare at the function
h(z) = x mod p, it will not morph into a random function.

3. AN ANALYSIS OF THE SECOND KIND

In spite of the above, it turns out that the first really satisfactory analysis of
hashing is based on an analysis of the second kind, so we shall proceed along
those lines.

Theorem 7 Assume that h really is chosen uniformly at random from the set
of all functions between U and {1,...,N}. Furthermore assume that h can be
evaluated in constant time. Then the expected time required to perform any
sequence of m operations (satisfying the upper bound N on the mazimum size of

the set) by chained hashing is O(m).

In other words, we can perform the operations in constant expected amortized
time per operation!

Exercise 8 The constant amortized time bound in the above theorem may seem
so attractive that the reader may consider actually ensuring that the premise is
true, i.e. actually choosing h uniformly at random from the set of all functions
between U and {1,...,N}. This is, as we shall see later, in a way a good idea,
but explain the big problem.

Let’s prove the theorem. Assume that the sequence of operations is
OPy(k1), 0Py (k2), ..., OPp (ki)

with oP; € {INSERT, DELETE, LOOKUP}. We are only mentioning the key-
parameters k;, since the information-parameters x; are unimportant for the anal-
ysis.



We choose h at random, and we want to compute the expectation of the ran-
dom variable T'(0Py(k;), 0Py (ks), ..., 0Py (kym)) = X T(0P;(k;)) By linearity of
expectation (a pearl of probability theory') we have

ZT oP;( =Y E[T(

7

So, we only have to show that for any i, E[T(op;(k;))] is O(1), and we are done.
Let’s fix ¢ and look at the term E[T(oP ( ;)]. Let’s call the appearance of the set
when this operation is to be performed (i.e. the set after i — 1 operations) for S;.
Then

E[T (op;(k:))]
1 + Ellength of linked list at entry h(k;) after instruction i — 1]
1+ E[#{y € Si | h(y) = h(k:)}]

_ 1+E{Z { 1, if h(y) = h(ks) }

0, otherwise

Cee|(y s |
— 1+ ZS_Pr[h(y)Zh(’fi)]

C ot Y PrlAG) = hk)
< 1+1+§\i?1\/{lic<f})

= 3

4. UNIVERSAL HASHING

Of course, the answer to exercise 8 leads you to the conclusion that the result
in the last section is nice but irrelevant. However, Carter and Wegman in their
seminal paper on universal hashing [2] saw the way out: Look at the analysis of
the last section. Where did we actually use anything about the probability space
associated with A7 We didn’t use much, only the following fact, which we’ll call

property (U):
(U) For all x # y, Pr[h(z) = h(y)] < 1/N.

Now, Carter and Wegman’s simple but brilliant idea was this: We will actually
choose h at random when we initialize our data structure, but not from the space
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of all functions. We will choose h from a much smaller space, but make sure that
the property (U) holds. This leads to the following definition:

Definition Let H be a class of functions mapping U to {1,..., N}. We say that
H is universal, if for any x # y in U, and an h, chosen uniformly at random in

H, we have
Prlh(x) = h(y)] < 1/N.

Also, we say that H is nearly universal, if we only have Pr[h(z) = h(y)] < 2/N.
Exercise 9 (for advertising agents to be) Why universal ¥

The definition of nearly universal is not standard, and is added here mainly for
convenience.

The theorem above now generalizes into:

Theorem 10 Choose h uniformly at random from a (nearly) universal family
H mapping U to {1,...,N}. Assume that members of H can be evaluated in
constant time. Then the expected time required to perform any sequence of m
operations (satisfying the upper bound N on the mazimum size of the set) by
chained hashing is O(m).

We now only have to exhibit a small, efficient, (nearly) universal family.

Theorem 11 Let p be a prime greater than N. Let H be the family mapping
{0,1,...,p— 1} to {0,..., N — 1}, containing, for each a € {0,...,p — 1}, the
function h,(x) = (axz mod p) mod N. Then H is nearly universal.

Before we show the theorem, let us note that this does indeed solve our problem!
If our universe U is, say {0,1,2,...,2% — 1} (i.e. the set of w-bit words), we can
choose p to be a prime between 2 and 2“*! (such a prime exists). When the
computation begins, we can select a random hash function from A and store all
information about it (i.e. p and a) in less than 3 machine words. Compare this
to the answer to exercise 8. We can also evaluate the hash function in constant
time, using standard arithmetic operations.

The proof of near universality is clever, but simple:

Prlha(z) = ha(y)]
= Pr[(az mod p) mod N = (ay mod p) mod N|
p—1 p—
= Pr[(az mod p) — (ay mod p) € {—LTJN, ...,—2N,—N,0,N,2N, ..., LT
[

= Prla(r —y) mod p € R],

WhereR:{O,N,2N,...,L”TJN,p N,p—2n,. p—L”TJN} Since Z/pZ is
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a field, the last probability is equal to

Rx—y)'| Rl _%*
bria e R(e—y) 1) RE—0T_RI_%
p p p

If we want a truly universal family (i.e. with property (U)) satisfied, we can
achieve this by taking as members of H all functions of the form h, ,(x) = (ax +
b mod p) mod N with a # 0. We shall not show this (near universality is sufficient
for the dictionary application).

We have now virtually shown the following theorem:

Theorem 12 The dynamic dictionary problem can be implemented using O(N)
space and expected constant amortized time per operation.

One slight problem with our solution is the prime p which much be found some-
how. However, since it only depends on the size of the universe, it is reasonable
to assume that it is given for free. An alternative is to use universal families
which are not based on primes. A particularly nice one which also avoids integer
division and uses only one multiplication is the following: The universe is again
U={0,1,...,2%—1}. The name of a hash function is just an odd number a in U.
To hash a key z, we multiply x by a. This gives a number in {0,1,...,2% — 1},
i.e. two consecutive words. Now, if we want the range of the family to be, say,
{0, 1}, we just pick the [ most significant bits of the least significant word of ax.
The proof that this does indeed have the near universality property can be found
in [3]. The proof is only slightly more complicated than the above.

5. THE FURTHER ADVENTURES OF THE HASH FUNCTION

A few years passed before people started noticing how generally useful a tool
universal hashing is, but by the late eighties, dictionaries were only one example
in a long list of (first theoretical and later practical) applications. Why is hashing
useful in general? A good rule of thump is that whenever you have a nice pattern
or some useful information and want to see it completely and utterly destroyed
(the Beavis and Butthead objective), hashing might come in useful. Now, why
would we want to destroy nice patterns or information? Well, we already saw
the dictionary example; in that example a “nice” pattern might be all the keys
ending up in one list! In the rest of the note, we show three other examples,
covering algorithms, cryptography, and complexity theory. They are just the tip
of an iceberg. For further information, we recommend the survey by Luby and
Wigderson [5].



6. DERANDOMIZATION

Consider the MAXCUT problem: Given a graph G = (V, E), find a two-colouring
of the vertices ¢ : V' — {RED, BLUE} s0 as to maximize

c(¢) = #{(z,y) € Elo(z) # o(y)}.

Here is a simple randomized algorithm which outputs a coloring ¢, so that
E(c(¢)) = |F|/2: Just colour each vertex randomly (RED or BLUE, each with
probability 1/2). Then,

Ele(¢)] = > Prlg(x) # ¢(y)] = |El/2

{zylek

Now, what about a deterministic, polynomial time, algorithm with the same
performance guarantee, i.e. outputting ¢, so that c¢(¢) > |E|/2?7 Simple: Let H
be a universal family, mapping V' to {0,1}. The analysis still holds if we choose
h € H at random and ¢(v) = h(v). But we know we can choose H so that it only
contains |V |?() members, so we can try them all in polynomial time and output
the coloring with the maximum c-value.

Reference: Luby and Wigderson [5].
7. A MOVIE SCRIPT

Two secret agents, Alice and Bob, communicate using the Internet. This is not
very secure, and indeed, Alice and Bob know that evil Claire regularly eavesdrop
on their conversation. Tomorrow, Alice is going to transmit to Bob a particularly
sensitive piece of information containing 1000 bits, so they are going to encrypt
the information. Claire is an employee at BRICS and has therefore unlimited
computational resources, so Alice and Bob do not want to employ a scheme based
on computational assumptions (such as RSA). Instead, they are going to use an
information theoretically secure scheme. A month ago, Alice and Bob met in
person, flipped a coin 2000 times, and both wrote down the resulting bit sequence.
They agreed to use the bits as one time pads in their next two sensitive messages
(sensitive messages always contain 1000 bits). So far, no sensitive messages have
been sent, so the secret bits are all unused, but tomorrow, Alice is going to take
her sensitive message, compute a bitwise XOR with the first 1000 secret bits, and
send the result to Bob, who will decrypt it by a similar operation. Claire will
not be able to get any information from the message, even using her network of
PowerPocketMultilndys.



Exercise 13 Why not?

However, even the best plan can fail. During the night Bob contacts Alice (using
the insecure channel). A few minutes ago, Bob surprised Doug (an agent of
Claire) in his office. He shot and killed him immediately, but in Doug’s hand was
the secret 2000 bit sequence (Bob admits that he probably shouldn’t have left it
on his desk) and on the office terminal Bob saw:

talk eclaire@gorm.daimi.aau.dk

[connection established]
10001111101101110100001110000100100010000000110101
10000010110010011101111111000001000101111101010110
11101011110010000001000010010011001011001111100100
00101111110110000101111010010000110101000111011111
Aaaaargh. ..

so now Claire knows something about the secret sequence; she’s received exactly
200 bits. Now, if these bits were 200 consecutive bits of the secret sequence, Alice
and Bob could just use a different portion of the sequence, but that does not seem
to be the case, Alice and Bob do not recognize the transmitted sequence at all.
They must be 200 bits about the sequence, the nature of which only Claire now
knows.

Exercise 14 Give examples of information, other than specific bits of the secret
key, which could be useful to Claire (if she has some idea about the nature of the
sensitive message to be sent tomorrow).

Now, how do Alice transmit the message tomorrow without compromising the
unconditional security demand? Alice and Bob decide to sleep on it.

And now, the exciting climax of the story: The next day, Alice and Bob agree,
over the insecure channel, on a family of universal hash functions H mapping
{0,1}2999 to {0, 1}1°9. If they decide on the family whose members are h, 4(x) =
(ax + b mod p) mod N, we have that |H| < 2492, Then, Alice flips a coin a
few thousand times and thereby determines a random member h € H. The
description of A is sent to Bob, again over the insecure channel (Claire hears all
this). Then they both hash their secret key, reducing it to 1000 bits, and Alice
sends her sensitive message, using the hashed key as a one-time pad. Whatever
information Claire received about the secret key, it is completely and utterly
destroyed by the hashing, and Alice’s last message looks completely random to
Claire.

Of course, Alice and Bob will now only be able to send this single message



using their key, so they’ll have to meet in person again before they sent the next
sensitive message. Perhaps that’ll teach Bob to stop leaving secret stuff on his
desk.

THE END. Any similarity to real persons (living or dead), events, or offices, is
purely coincidental

Since this was meant as an exciting movie script for a general audience, we
simplified the last part a bit. In a precise information theoretic sense which we
won’t go into here, we can expect Claire to be able to learn about 21000-2000+200 _
27890 hits about the sensitive message. But for all practical purposes, that’s 0.

Reference: Bennett et al [1].
8. COMPLEXITY CLASSES

Recall that the circuit satisfiability problem CIRCUIT SAT problem is N P-
complete. Thus, if P # NP, there is no way to decide in polynomial time if
the input variables of a Boolean circuit can be assigned truth values so that the
circuit evaluates to TRUE. It follows that there is no way of finding satisfying
assignments to satisfiable circuits in polynomial time.

Exercise 15 Why does the last statement follow from the first?

Of course, we are interested in tracking the source of the difficulty. Here is one
possible hypothesis: The source of difficulty is the fact that a typical satisfiable
circuit has quite a few different satisfying assignments, and a search algorithm
trying to track one of them by sophisticated means (such as genetic search) will
be confused by the multitude of solutions leaving inconsistent hints in the search
space. A more precise way to phrase that hypothesis is

(H) NP # P, so CIRCUIT SAT is not in P, but whenever there is just one
satisfying assignment to a Boolean circuit, we can find it in polynomial time.

Well, the reasons for suggesting (H) are arguably pretty lame, so it is probably
reasonable to assume “not (H)” like we usually assume P # NP and get on
with our lives. But one of the points of complexity theory is to minimize our
sgnorance by making as few unproven assumptions as possible. Assuming P #
NP is usually regarded as pretty safe. Is “not (H)” equally (or almost as) safe?
Universal hashing gives us the answer.

Theorem 16 (H) implies that every problem in NP can be solved by a Monte
Carlo algorithm in polynomial time.



By a Monte Carlo algorithm we mean a randomized algorithm which may answer
incorrectly, but on any input z, the probability of an incorrect answer is (e.g.)
271900 " Thus, you are very unlikely to ever see an incorrect answer, and, if you
once suspect an answer to be incorrect, you can ask again! So “not (H)” seems
almost as safe an assumption as P # NP.

A sketch of the theorem is as follows: Assume (H) is true, and let A be the
algorithm which finds unique satisfying assignments in polynomial time. We now
show that CIRCUIT SAT can be solved by a Monte Carlo algorithm in polynomial
time. Since CIRCUIT SAT is N P-complete, the theorem follows.

The Monte Carlo algorithm does the following: Given a circuit C', it constructs a
random sequence of circuits, Cy, Cy, ..., Cy,. (with r = number of variable of C),
so that

1. If C' is unsatisfiable, the C;’s are also unsatisfiable.

2. If C is satisfiable, then, with non-negligible probability, at least one of the
C;’s is uniquely satisfiable.

Furthermore, the size of the C;’s should be polynomial in C.

If we can do this, we have solved our problem: We just give the C;’s to A, and
see if it finds satisfying assignments to any of them. If it does, we know that C' is
satisfiable. If not, we iterate, with new C;’s. After having asked A a number of
times, and no satisfying assignments are ever found, we know that C is extremely
unlikely to be satisfiable, because we know that with overwhelming probability,
one of the C;’s we’ve tried must have been uniquely satisfiable, and A would have
found a satisfying assignment to such a Cj.

So how are the C;’s defined? We take a universal family % mapping {0,1}" —
{0,1} and pick random members hq, ho, ..., hy,. Now, we construct C; so that

Ci(zx) & C(x) Nhi(z) =1 ANho(z) =1 A -+ A hi(z) =1

This works! The intuitive reason is as follows: Each time another clause h;(z) = 1
is added, we can expect the number of satisfying assignments to be approximately
halved. When we get to Cl,., they are almost certainly gone completely. But then,
it is likely that the last circuit that had a satisfying assignment will have exactly
1, because a jump from, say, 2 satisfying assignments to 0 is less likely than going
from 2 to 1 to 0. Furthermore, if the family A is a small, efficient, family (like
the ones we saw earlier), the size of C; will be polynomial in C.

Reference: Valiant and Vazirani [6].
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9. PROBLEMS

Problem 17 Arnold Dummy decides to implement hashing using Dumey’s func-
tion h(z) = (x mod p) for some prime p. Of course, the range of this function is
{0,...,p — 1} and Dummy wants the hash function to contain 1000 cells - and
1000 is not a prime. Dummy decides to hack his way out of this by choosing
p = 1327 and defining h(xz) = (z mod p) mod 1000. Is this a good idea?

Problem 18 Let A be a 0-1 matriz of dimensions r X s. N By linear algebra,
we can view A as a linear map over the field Zy = {0, 1} mapping (Zs)* to (Zy)"
(just do “usual” matriz multiplication except that everything is done modulo 2).
Show that the set of all r x s matrices form a universal family of hash functions.
Discuss advantages and disadvantages of using this in practice instead of the ones
based on integer arithmetic.

Problem 19 In theorem 12, we assume that we know the upper bound N on the
set in advance and that we are allowed to use space O(N) at all times. Show
that this assumption can be removed, i.e. that there is a solution to the dictio-
nary problem with expected constant amortized time per operation and using space
which is, at any given time, proportional to the current size of the set.

Problem 20 [Oyster of the week]| The performance guarantee on the dictio-
nary problem is expected constant amortized time. However, individual operations
are not guaranteed any good worst case performance.

In the static dictionary problem, we do not have INSERT’s or DELETE’s, instead
we have an INIT operation which take a set of keys and associated information
and produces a data structure representing the set. The data structure is never
changed, we only perform LLOOKUP’s on it

Deuvise a scheme for static dictionaries, so that any set is converted into a data
structure of linear space, and so that any LOOKUP operation can be performed in
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