Weekplan: Level Ancestor

Philip Bille Inge Li Gørtz

References and Reading

[1] The Level Ancestor Problem Simplified, M. A. Bender, M. Farach-Colton, Theoret. Comp. Sci., 2003.
[2] Scribe notes from MIT.
[3] Finding level-ancestors in dynamic trees, P. F. Dietz, WADS 1991.
[4] Finding level-ancestors in trees, O. Berkman, U. Vishkin, J. Comput. System Sci., 1994
We recommend reading [1] and [2] in detail.

Exercises

1 Direct shortcuts Find a tree with n nodes such that the total size of all the arrays is $\Theta\left(n^{2}\right)$.

2 [w] Find LCA Perform LA(v, 11) on the tree in Figure 1 using
2.1 Jump pointers: show which jump pointers that are used.
2.2 Long paths: Show which paths that are used.
2.3 Ladders: Show which ladders that are used.

3 Long Path Decomposition Bounds Prove tight bounds for the number of long paths in a root-to-leaf path.
3.1 Find a tree with n nodes such that the maximum number of long paths on a root-to-leaf path is $\Omega(\sqrt{n})$.
3.2 [*] Show that any tree with n nodes has $O(\sqrt{n})$ long paths on a root-to-leaf path.

4 Ladders Let T be a tree of height h with n nodes. Solve the following exercises.
4.1 Show that any root-to-leaf path can be covered by at most $O(\log h)=O(\log n)$ ladders.
4.2 Ladders are obtained by doubling the long paths. Suppose we instead extend long paths by a factor $k>2$. What is the effect?

5 Few Leafs Suppose that your input tree has no more than $n / \log n$ leaves. Suggest a (slightly) simplified solution to the level ancestor problem with linear space and constant query time.

6 Heavy Paths Let T be a tree with n nodes. Define size (v) to be the number of descendant of v. Consider the following decomposition rule.

- First find a root-to-leaf path as follows. Start at the root. At each node continue to a child of maximum size, until we reach a leaf. Remove the resulting path and recursively apply the rule to the remaining subtrees.
The resulting paths are called the heavy paths and the edges not on a heavy path are light edges. Solve the following exercises.
6.1 [w] Draw a not to small example of heavy paths in a tree.
6.2 Give an upper bound on the number of heavy paths on any root-to-leaf path in T.

7 Weighted Level Ancestor Let T be tree with n nodes. Each edge is assigned a weight from $\{0, \ldots, u-1\}$, and the weight of a node v is the sum of the weight of the edges on the path from the root to v. We want a data structure that supports the following operation on T. Given a leaf ℓ and an integer x define

- $\mathrm{WLA}(\ell, x)$: return the deepest ancestor of ℓ of weight $\leq x$.
7.1 [w] Give a simple data structure that supports WLA queries in $O\left(n^{2}\right)$ space and $O(\log \log u)$ time.
7.2 Give a data structure that supports WLA queries in $O(n)$ space and $O(\log n)$ time.
7.3 Consider the predecessor problem on n elements from a universe of size u. Any solution that uses $O(n)$ space requires at least $\Omega(\log \log u)$ query time. Can we hope to solve the weighted level ancestor problem in $O(n)$ space and $O(1)$ time?
$7.4[*]$ Give a data structure that supports WLA queries $O(n)$ space and $O(\log \log u)$ time. Hint: Use heavy path decomposition.

8 Level Ancestor on Shallow Binary Trees Let T be a rooted, binary tree with n nodes of height $O(\log n)$. Give a simple and compact data structure that supports fast level ancestor queries (without using a level ancestor data structure). Hint: A path in T can be encoded in a single word of memory.

