Breaking Quadratic Time for
Small Vertex Connectivity

Danupon Nanongkai Thatchaphol Saranurak Sorrachai Yingchareonthawornchai
KTH TTIC Michigan State U = Aalto University
TCS+

17 April 2019



Definition: k-Connectivity

A graph G is k-connected iff

Cannot disconnect G by removing less than k nodes
(VS |S| < k, then G[V — S] has only one connected component)
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Given a graph G = (V, E) with n nodes and m edges

Answer: is G k-connected?
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Our result

Prove the conjecture by [Aho, Hopcroft and Ullman’74]
fork = O(1) up to log factors

Break the 50-year-old bound of O(n?) since Kleitman’69

Fastest when 4 < k < n(®~-1)/3 = ;0456



Other results

In directed graphs, need the same O (mk?) time

(and better bounds in dense graphs)
Comparison:

Directed k-edge connect
Best known: O (mk)
by [Gabow FOCS’00]

(1 + €)-approximation in O (mk/€) time
in both undirected and directed graphs

(and better bounds in dense graphs)



If | have a time machine...

To people in 90’s:
“try to solve locally”

To people in 70’s:
“try to solve locally + use randomization”

Our algorithms could have been found long time ago
using basic techniques from the 70’s



Part O: Definitions



Definition: Vertex Cut (L,S,R)
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Definition: Vertex Cut (L,S,R)
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Definition: s-t Connectivity

K(S, t): size of min cut (L,S,R) wheres € Landt € R

Can check k(s,t) = k in
O (mk) time by Ford-Fulkerson

Note: G is k-connected iff k(s,t) = k forall s, t €



Part 1: The Framework



Suppose G is not k-connected

So, thereis a cut (L, S,R) where |S| < k
Assume vol(L) < vol(R) where vol(X) = ),,,cxdegu
Goal: w.h.p. find some cut (L', S’,R") where |S'| < k
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Case 1: Balanced vol(L) > Q(—)

Observe: If sample O (k) pairs of edges e = (x,x") and f = (v,y"),
then, w.h.p., exists a sampled pair (e,f) wherex € Landy € R

Alg: For each sampled (e, f), if k(x,y) < k, return a cut

must obtain a cut once w.h.p.

Time: 0 (k) x 0(mk) = 0(mk?)




Case 2: Unbalanced vol(L) < %
Suppose vol(L) € [2¢71, 21].

Observe: If sample 0(m/2!) edges e = (x, x")
then, w.h.p., exists a sampled edge e where x € L

Want: find the separator S “near” x in ~0(2%) time
Cannot spend linear time per sample




The key tool: Local Vertex Connectivity

Informal: given a seed node x,
Find L 3 x of small volume
and has cut-size less than k

in sub-linear time
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The key tool: Local Vertex Connectivity

Input: Local(x, v, k) where x is a node (andv < m/k)

Output: either
* Declare that no L 3 x where |[N(L)| < kandvol(L) <v
e Return L 3 x where [N(L)| < k

We can do this in time: O(vk?)
No dependency on n! Q —




Case 2: Unbalanced vol(L) < %
Suppose vol(L) € [2¢71, 21].

Observe: If sample 0(m/2!) edges e = (x, x")
then, w.h.p., exists a sampled edge e where x € L

Alg: For each sampled e, run Local(x, 2%, k)

must return a cut once w.h.p.

Time: O(m/2') x 0(2'k?) = O0(mk?) L s _
18I< k &




The O (mk?)-time Algorithm

4.

Sample O (k) pairs of edges e = (x,x) and f = (y,y")
For each sampled (e, f), return acutif k(x,y) < k

Fori =1, ...,log%

1. Sample O(m/2") edges e = (x, x")
2. For each sampled e, run Local(x, 2%, k)

If did not find a cut, declare G is k-connected

Find a cut w.h.p.\
(s
Time: 0(k) X 0(1

Find a cut w.h.p. when
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Part 2: Local Vertex Connectivity



Definition: Local Vertex Connectivity

Input: Local(x, v, k) where x is a node (andv < m/k)

Output: either
* Declare that no L 3 x where |[N(L)| < kandvol(L) <v
e Return L 3 x where [N(L)| < k




Part / : Reducing to directed edge connectivity



Definition: Local Vertex Connectivity

Input: Local(x, v, k) where x is a node (andv < m/k)

Output: either
* Declare thatno L 3 x where |[N(L)| < kandvol(L) <v
e Return L 3 x where |[N(L)| < k
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Definition: Local Directed Edge Connectivity

Input: Local(x, v, k) where x is a node (andv < m/k)
. vol(L) = z deg,,: u + de
Output: either uel

* Declare that no L 3 x where |[6,,;(L) | < kand vol(L) <v
* Return L 3 x where |6,,:(L)| < k

Sout(L) = E(L,V — L)




Reducing from vertex to directed edge connectivity
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Reducing from vertex to directed edge connectivity
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Definition: Local Directed Edge Connectivity

Input: Local(x, v, k) where x is a node (andv < m/k)

Output: either
* Declare that no L 3 x where |[6,,;(L) | < kand vol(L) <v
* Return L 3 x where |6,,:(L)| < k




Part 2.2: Warm-up



Suppose |64y (L) = 1 and |6, (L) =0
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What if ‘6”’1(1‘)‘ >07



ldea: Sampling an Explored Edge




Part 2.3: The Algorithm




1. Time: k X 0(vk) = 0(vk?)

Repeat k times.

1. Grow DFS tree T from x
and explore exactly k - v edges

!/ .
2. If get stuck, found the cut L'. Terminate -, ¢ 4 e 1£ 17 ic returt

3. Sample an explored edges (v, y). then 8, (L) < k
4. Reverse the path Py, in T

Terminate with no cut.

3. Completeness: If no cut returned, thenw.p. > 1/10
thereisno L 3 x, where vol(L) < vand §,,;(L) < k



Soundness

Fix any L' 3 x. Suppose we reverse P,,,.

Ify &L, 6, (L") « 8, (L") — 1 Ify € L', §,,: (L") stays the same
Y

/

- y

<

At the end §,,:(L") = 0 and ‘ , -
there were < k path-reversions Sout (L") < k initially




Part 3: Recap



The O (mk?)-time Algorithm

4.

Sample O (k) pairs of edges e = (x,x) and f = (y,y")
For each sampled (e, f), return acutif k(x,y) < k

Fori =1, ...,log%

1. Sample O(m/2") edges e = (x, x")
2. For each sampled e, run Local(x, 2%, k)

If did not find a cut, declare G is k-connected

Find a cut w.h.p.\
(s
Time: 0(k) X 0(1

Find a cut w.h.p. when
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Time: 0(;) X 0(2'k?)



