Breaking Quadratic Time for
Small Vertex Connectivity

Danupon Nanongkai Thatchaphol Saranurak Sorrachai Yingchareonthawornchai
KTH TTIC Michigan State U = Aalto University
TCS+

17 April 2019

Definition: k-Connectivity

A graph G is k-connected iff

Cannot disconnect G by removing less than k nodes
(VS |S| < k, then G[V — S] has only one connected component)

G 15 9- connectel

N

G 1o ot 9 ~ connectey

Given a graph G = (V, E) with n nodes and m edges

Answer: is G k-connected?

ivial m
Irjan’72 m
opcroft Tarjan’73 m
onjecture: Aho, Hopcroft and Ullman’74 m
anevsky Ramachandran’91 n?

Jur work k*m

Our result

Prove the conjecture by [Aho, Hopcroft and Ullman’74]
fork = O(1) up to log factors

Break the 50-year-old bound of O(n?) since Kleitman’69

Fastest when 4 < k < n(®~-1)/3 = ;0456

Other results

In directed graphs, need the same O (mk?) time

(and better bounds in dense graphs)
Comparison:

Directed k-edge connect
Best known: O (mk)
by [Gabow FOCS’00]

(1 + €)-approximation in O (mk/€) time
in both undirected and directed graphs

(and better bounds in dense graphs)

If | have a time machine...

To people in 90’s:
“try to solve locally”

To people in 70’s:
“try to solve locally + use randomization”

Our algorithms could have been found long time ago
using basic techniques from the 70’s

Part O: Definitions

Definition: Vertex Cut (L,S,R)

56?0(\/\01*0\/‘

/

L R. (L,S,R) is a vertex cut
S e L,S,RpartitionVandL,R #
* No edge between L and R

J/j\ i.e. neighbors N(L) = S = N(
Size of (L,S,R) = |S]

Definition: Vertex Cut (L,S,R)

Se?uwoﬁo\/‘

(L,S,R) is a vertex cut
S e L,S,RpartitionVandL,R #
* No edge between L and R

j\R No ed
J/ i.e. neighbors N(L) =S = N(
Size of (L,S,R) = |S]

Definition: s-t Connectivity

K(S, t): size of min cut (L,S,R) wheres € Landt € R

Can check k(s,t) = k in
O (mk) time by Ford-Fulkerson

Note: G is k-connected iff k(s,t) = k forall s, t €

Part 1: The Framework

Suppose G is not k-connected

So, thereis a cut (L, S,R) where |S| < k
Assume vol(L) < vol(R) where vol(X) =),,,cxdegu
Goal: w.h.p. find some cut (L', S’,R") where |S'| < k

s\

| 131< K T

Case 1: Balanced vol(L) > Q(—)

Observe: If sample O (k) pairs of edges e = (x,x") and f = (v,y"),
then, w.h.p., exists a sampled pair (e,f) wherex € Landy € R

Alg: For each sampled (e, f), if k(x,y) < k, return a cut

must obtain a cut once w.h.p.

Time: 0 (k) x 0(mk) = 0(mk?)

Case 2: Unbalanced vol(L) < %
Suppose vol(L) € [2¢71, 21].

Observe: If sample 0(m/2!) edges e = (x, x")
then, w.h.p., exists a sampled edge e where x € L

Want: find the separator S “near” x in ~0(2%) time
Cannot spend linear time per sample

The key tool: Local Vertex Connectivity

Informal: given a seed node x,
Find L 3 x of small volume
and has cut-size less than k

in sub-linear time

gs T~

18I< k =~

The key tool: Local Vertex Connectivity

Input: Local(x, v, k) where x is a node (andv < m/k)

Output: either
* Declare that no L 3 x where |[N(L)| < kandvol(L) <v
e Return L 3 x where [N(L)| < k

We can do this in time: O(vk?)
No dependency on n! Q —

Case 2: Unbalanced vol(L) < %
Suppose vol(L) € [2¢71, 21].

Observe: If sample 0(m/2!) edges e = (x, x")
then, w.h.p., exists a sampled edge e where x € L

Alg: For each sampled e, run Local(x, 2%, k)

must return a cut once w.h.p.

Time: O(m/2') x 0(2'k?) = O0(mk?) L s _
18I< k &

The O (mk?)-time Algorithm

4.

Sample O (k) pairs of edges e = (x,x) and f = (y,y")
For each sampled (e, f), return acutif k(x,y) < k

Fori =1, ...,log%

1. Sample O(m/2") edges e = (x, x")
2. For each sampled e, run Local(x, 2%, k)

If did not find a cut, declare G is k-connected

Find a cut w.h.p.\
(s
Time: 0(k) X 0(1

Find a cut w.h.p. when

. m
vol(L) = 2t < M
sae O (1 A(2i1,2

Time: 0(;) X 0(2'k?)

Part 2: Local Vertex Connectivity

Definition: Local Vertex Connectivity

Input: Local(x, v, k) where x is a node (andv < m/k)

Output: either
* Declare that no L 3 x where |[N(L)| < kandvol(L) <v
e Return L 3 x where [N(L)| < k

Part / : Reducing to directed edge connectivity

Definition: Local Vertex Connectivity

Input: Local(x, v, k) where x is a node (andv < m/k)

Output: either
* Declare thatno L 3 x where |[N(L)| < kandvol(L) <v
e Return L 3 x where |[N(L)| < k

L s _——
181 k =~

Definition: Local Directed Edge Connectivity

Input: Local(x, v, k) where x is a node (andv < m/k)
. vol(L) = z deg,,: u + de
Output: either uel

* Declare that no L 3 x where |[6,,;(L) | < kand vol(L) <v
* Return L 3 x where |6,,:(L)| < k

Sout(L) = E(L,V — L)

Reducing from vertex to directed edge connectivity

v i\’wﬂ'
Vin
.,

Vout

I Vin
o

A

Reducing from vertex to directed edge connectivity

\]
NCL) %OM\'(LI)
L L
%
&

IN (D)= B (LI
Vol (L) =ot vel L))

Definition: Local Directed Edge Connectivity

Input: Local(x, v, k) where x is a node (andv < m/k)

Output: either
* Declare that no L 3 x where |[6,,;(L) | < kand vol(L) <v
* Return L 3 x where |6,,:(L)| < k

Part 2.2: Warm-up

Suppose |64y (L) = 1 and |6, (L) =0

TS ‘Prow R

Ne.x‘i‘ DFS
EXP\eV‘Q QXOC:H\/ U+ 20‘929_

will get stuck
=7 must 9Q Out of Ll. ‘Revevsi"_‘} pith ta 4\"0‘”’ =2 ownd obtain

= QourH) =0
o O

What if ‘6”’1(1‘)‘ >07

ldea: Sampling an Explored Edge

Part 2.3: The Algorithm

1. Time: k X 0(vk) = 0(vk?)

Repeat k times.

1. Grow DFS tree T from x
and explore exactly k - v edges

!/ .
2. If get stuck, found the cut L'. Terminate -, ¢ 4 e 1£ 17 ic returt

3. Sample an explored edges (v, y). then 8, (L) < k
4. Reverse the path Py, in T

Terminate with no cut.

3. Completeness: If no cut returned, thenw.p. > 1/10
thereisno L 3 x, where vol(L) < vand §,,;(L) < k

Soundness

Fix any L' 3 x. Suppose we reverse P,,,.

Ify &L, 6, (L") « 8, (L") — 1 Ify € L', §,,: (L") stays the same
Y

/

- y

<

At the end §,,:(L") = 0 and ‘ , -
there were < k path-reversions Sout (L") < k initially

Part 3: Recap

The O (mk?)-time Algorithm

4.

Sample O (k) pairs of edges e = (x,x) and f = (y,y")
For each sampled (e, f), return acutif k(x,y) < k

Fori =1, ...,log%

1. Sample O(m/2") edges e = (x, x")
2. For each sampled e, run Local(x, 2%, k)

If did not find a cut, declare G is k-connected

Find a cut w.h.p.\
(s
Time: 0(k) X 0(1

Find a cut w.h.p. when

. m
vol(L) = 2t < M
sae O (1 A(2i1,2

Time: 0(;) X 0(2'k?)

