Breaking Quadratic Time for **Small Vertex Connectivity**

Thatchaphol Saranurak TTIC

TCS+ 17 April 2019

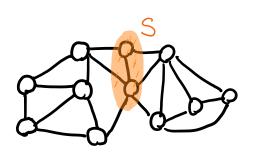
Sorrachai Yingchareonthawornchai Michigan State U → Aalto University

<u>Definition:</u> *k*-Connectivity

A graph G is k-connected iff

Cannot disconnect G by removing less than k nodes

 $(\forall S \mid S \mid < k$, then G[V - S] has only one connected component)



6 is 2-connected

History (when k is small)

*Hide log f

Given a graph $G = (V, I)$	E) with n nodes	and m edges
----------------------------	-------------------	---------------

Answer: is *G k*-connected?

eference		
ivial	m	k = 1
ırjan'72	m	k = 2
opcroft Tarjan'73	m	k = 3
onjecture: Aho, Hopcroft and Ullman'74	m	For any k
anevsky Ramachandran'91	n^2	k = 4
)ur work	k^2m	

Our result

Prove the conjecture by [Aho, Hopcroft and Ullman'74] for k = O(1) up to log factors

Break the 50-year-old bound of $O(n^2)$ since Kleitman'69

Fastest when $4 \le k \le n^{(\omega - 1)/3} = n^{0.456}$

Other results

In directed graphs, need the same $\tilde{O}(mk^2)$ time (and better bounds in dense graphs)

Comparison:
Directed k-edge connect
Best known: O(mk)by [Gabow FOCS'00]

 $(1+\epsilon)$ -approximation in $\tilde{O}(mk/\epsilon)$ time in both undirected and directed graphs (and better bounds in dense graphs)

If I have a time machine...

To people in 90's:

"try to solve locally"

To people in **70**'s:

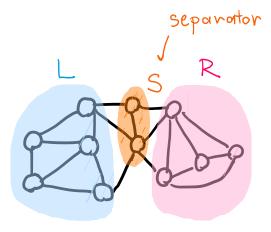
"try to solve locally + use randomization"

Part 0: Definitions

Our algorithms could have been found long time ago using basic techniques from the 70's

Definition: Vertex Cut (L,S,R)

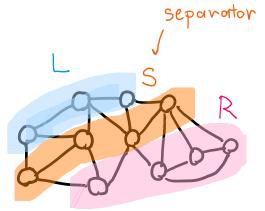
<u>Definition</u>: Vertex Cut (L,S,R)



(L, S, R) is a **vertex cut**

- L, S, R partition V and $L, R \neq$
- No edge between L and R
 i.e. neighbors N(L) = S = N(

Size of (L, S, R) = |S|



(L, S, R) is a **vertex cut**

- L, S, R partition V and $L, R \neq$
- No edge between L and R
 i.e. neighbors N(L) = S = N(

Size of (L, S, R) = |S|

<u>Definition:</u> *s-t* Connectivity

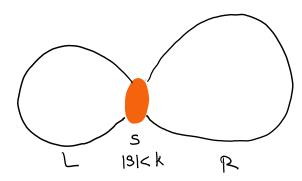
K(S, t): size of min cut (L, S, R) where $S \in L$ and $t \in R$

Can check $\kappa(s,t) \ge k$ in O(mk) time by Ford-Fulkerson

Part 1: The Framework

Suppose G is not k-connected

So, there is a cut (L, S, R) where |S| < kAssume $vol(L) \le vol(R)$ where $vol(X) = \sum_{u \in X} \deg u$ **Goal:** w.h.p. find some cut (L', S', R') where |S'| < k



Case 2: Unbalanced $vol(L) \le \frac{m}{k}$

Suppose $vol(L) \in [2^{i-1}, 2^i]$.

Observe: If sample $\tilde{O}(m/2^i)$ edges e=(x,x') then, w.h.p., exists a sampled edge e where $x \in L$

Want: find the separator S "near" x in $\sim O(2^i)$ time Cannot spend linear time per sample

Case 1: Balanced $\operatorname{vol}(L) \ge \Omega(\frac{m}{k})$

Observe: If sample $\tilde{O}(k)$ pairs of edges e=(x,x') and f=(y,y'), then, w.h.p., exists a sampled pair (e,f) where $x\in L$ and $y\in R$

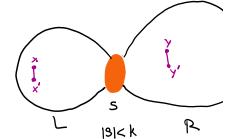
Alg: For each sampled (e, f), if $\kappa(x, y) < k$, return a cut

must obtain a cut once w.h.p.

P

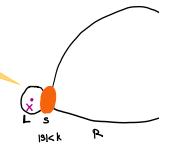
131< K

Time: $\tilde{O}(k) \times O(mk) = \tilde{O}(mk^2)$



The key tool: Local Vertex Connectivity

Informal: given a seed node x, Find $L \ni x$ of small volume and has cut-size less than k in sub-linear time



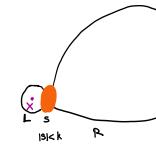
The key tool: Local Vertex Connectivity

Input: Local(x, v, k) where x is a node (and $v \le m/k$)

Output: either

- Declare that no $L \ni x$ where |N(L)| < k and $\operatorname{vol}(L) \le v$
- Return $L \ni x$ where |N(L)| < k

We can do this in time: $\tilde{O}(vk^2)$ No dependency on n!



Case 2: Unbalanced $vol(L) \leq \frac{m}{k}$

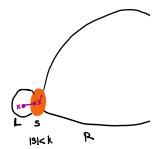
Suppose $vol(L) \in [2^{i-1}, 2^i]$.

Observe: If sample $\tilde{O}(m/2^i)$ edges e=(x,x') then, w.h.p., exists a sampled edge e where $x \in L$

Alg: For each sampled e, run Local $(x, 2^i, k)$

must return a cut once w.h.p.

Time: $\tilde{O}(m/2^i) \times \tilde{O}(2^i k^2) = \tilde{O}(mk^2)$



The $ilde{O}(mk^2)$ -time Algorithm

- 1. Sample $\tilde{O}(k)$ pairs of edges e=(x,x') and f=(y,y')
- 2. For each sampled (e, f), return a cut if $\kappa(x, y) < k$

Find a cut w.h.p. vol(L) $\geq \Omega(\frac{m}{k})$

Time: $\tilde{O}(k) \times O(k)$

- 3. For $i = 1, ..., \log \frac{m}{k}$
 - 1. Sample $\tilde{O}(m/2^i)$ edges e = (x, x')
 - 2. For each sampled e, run Local $(x, 2^i, k)$

Find a cut w.h.p. when m

 $\operatorname{vol}(L) \approx 2^i \le \frac{m}{k}$

Time: $\tilde{O}(\frac{m}{2^i}) \times \tilde{O}(2^i k^2)$

4. If did not find a cut, declare *G* is *k*-connected

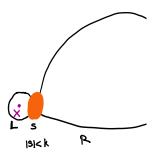
Part 2: Local Vertex Connectivity

<u>Definition:</u> Local Vertex Connectivity

Input: Local(x, v, k) where x is a node $(\text{and } v \leq m/k)$

Output: either

- Declare that no $L \ni x$ where |N(L)| < k and $\operatorname{vol}(L) \le v$
- Return $L \ni x$ where |N(L)| < k



Part 2.1: Reducing to directed edge connectivity

<u>Definition:</u> Local Vertex Connectivity

Input: Local(x, v, k) where x is a node $(\text{and } v \leq m/k)$

Output: either

- Declare that no $L \ni x$ where |N(L)| < k and $vol(L) \le v$
- Return $L \ni x$ where |N(L)| < k

Isl< k

<u>Definition:</u> Local Directed Edge Connectivity

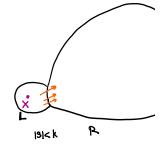
Input: Local(x, v, k) where x is a node $(and v \le m/k)$

Output: either

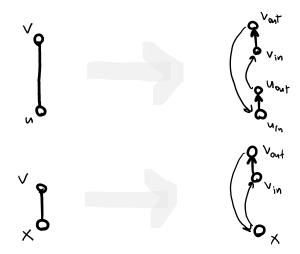
$$vol(L) = \sum_{u \in L} \deg_{out} u + d\epsilon$$

- Declare that no $L \ni x$ where $|\delta_{out}(L)| < k$ and $\widehat{vol}(L) \le v$
- Return $L \ni x$ where $|\delta_{out}(L)| < k$

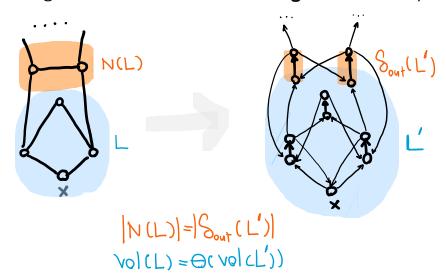
$$\delta_{out}(L) = E(L, V - L)$$



Reducing from **vertex** to **directed edge** connectivity



Reducing from **vertex** to **directed edge** connectivity

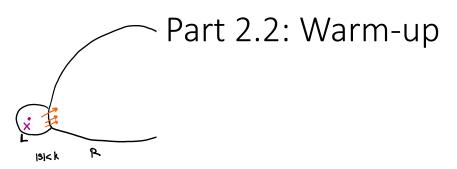


<u>Definition:</u> Local Directed Edge Connectivity

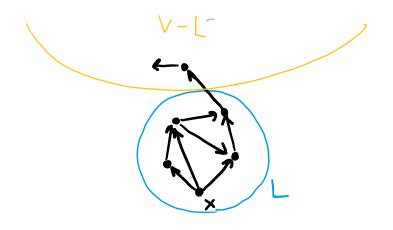
Input: Local(x, v, k) where x is a node $(and v \le m/k)$

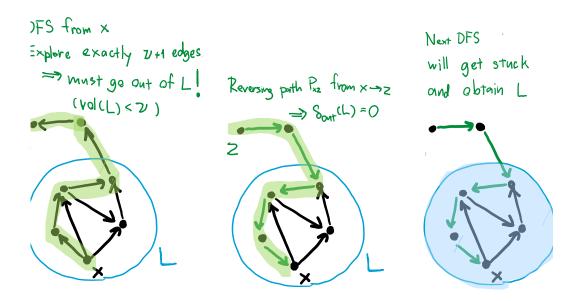
Output: either

- Declare that no $L \ni x$ where $|\delta_{out}(L)| < k$ and $\operatorname{vol}(L) \le \nu$
- Return $L \ni x$ where $|\delta_{out}(L)| < k$

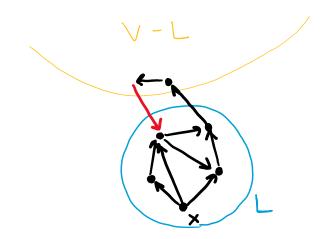


Suppose $|\delta_{out}(L)| = 1$ and $|\delta_{in}(L)| = 0$

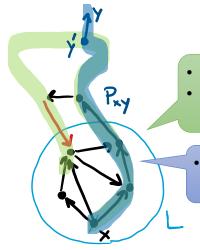




What if $|\delta_{in}(L)| > 0$?



Idea: Sampling an Explored Edge



- Sample an explored edge (y', y).
- Most explored edges are outside *L*, so *y* should be outside *L*.
- Reversing path P_{xy} from x to y will reduce $\delta_{out}(L)$.

1. Time: $k \times O(vk) = O(vk^2)$

Repeat k times.

- 1. Grow DFS tree T from x and explore exactly $k \cdot v$ edges
- 2. If get stuck, found the cut L'. **Terminate**
- 3. Sample an explored edges (y', y).
- 4. Reverse the path P_{xy} in T

Terminate with no cut.

2. Soundness: If L' is return then $\delta_{out}(L') < k$

3. Completeness: If no cut returned, then w.p. > 1/10 there is no $L \ni x$, where $\operatorname{vol}(L) < \nu$ and $\delta_{out}(L) < k$

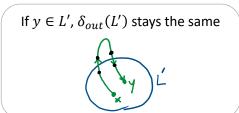
Can repeat $ilde{O}(1)$ times to get high probability

Soundness

Fix any $L' \ni x$. Suppose we reverse P_{xy} .

Part 2.3: The Algorithm





Part 3: Recap

At the end $\delta_{out}(L')=0$ and there were < k path-reversions

 $\delta_{out}(L') < k$ initially

The $ilde{O}(mk^2)$ -time Algorithm

- 1. Sample $\tilde{O}(k)$ pairs of edges e=(x,x') and f=(y,y')
- Find a cut w.h.p. $vol(L) \ge \Omega(\frac{m}{k})$
- 2. For each sampled (e, f), return a cut if $\kappa(x, y) < k$
- Time: $\tilde{O}(k) \times O(r)$

- 3. For $i = 1, ..., \log \frac{m}{k}$
 - 1. Sample $\tilde{O}(m/2^i)$ edges e = (x, x')
 - 2. For each sampled e, run Local $(x, 2^i, k)$

Find a cut w.h.p. when $\operatorname{vol}(L) \approx 2^i \leq \frac{m}{k}$ Time: $\tilde{\mathcal{O}}(\frac{m}{2^i}) \times \tilde{\mathcal{O}}(2^i k^2)$

4. If did not find a cut, declare *G* is *k*-connected