Breaking Quadratic Time for
Small Vertex Connectivity

Danupon Nanongkai Thatchaphol Saranurak
KTH TTIC

TCS+
17 April 2019

Given a graph G = (V, E) with n nodes and m edges

Answer: is G k-connected?

Sorrachai Yingchareonthawornchai
Michigan State U > Aalto University

Definition: k-Connectivity

A graph G is k-connected iff

Cannot disconnect G by removing less than k nodes
(VS |S| < k, then G[V — S] has only one connected component)

S
CD 15 9- Covw\ec.-\—ul

NS

G i5 ot 3~Cpmmedcd

*Hide log 1
History (when k is small) g
| |
ivial m k=1
irjan’72 m k=2
opcroft Tarjan’73 m k=3
onjecture: Aho, Hopcroft and Ullman’74 m For any k
anevsky Ramachandran’91 n? k=14

)ur work

Our result
Prove the conjecture by [Aho, Hopcroft and Ullman’74]

for k = 0(1) up to log factors

Break the 50-year-old bound of 0(n?) since Kleitman’69

Fastest when 4 < k < n(@~1)/3 = 0456

If | have a time machine...

To people in 90's:
“try to solve locally”

To people in 70's:
“try to solve locally + use randomization”

Our algorithms could have been found long time ago
using basic techniques from the 70’s

Other results

In directed graphs, need the same O (mk?) time

(and better bounds in dense graphs)
Comparison:
Directed k-edge connect
Best known: O (mk)
by [Gabow FOCS’00]

(1 + €)-approximation in O (mk/¢) time
in both undirected and directed graphs

(and better bounds in dense graphs)

Part O: Definitions

Definition: Vertex Cut (L,S,R) Definition: Vertex Cut (L,S,R)

Se?uwo’ﬁo\/‘ Se?uwm‘b\(‘

J J

L R (L, S, R) is a vertex cut | (L, S, R) is a vertex cut
S * L,S,R partitionV and L,R + S e L,S,R partitionV and L,R #
* No edge between L and R * No edge between L and R

J/_\-\ i.e. neighbors N(L) =S = N(J/\R i.e. neighbors N(L) = § = N(
Size of (L,S,R) = |S| Size of (L,S,R) = |S|

Definition: s-t Connectivity

K(S, t): size of min cut (L,S,R) wheres € Landt € R

Can check k(s,t) = kin .
O (mk) time by Ford-Fulkerson Pa rt 1 . Th € Fra mewo rk

Note: G is k-connected iff k(s,t) = k forall s,t €

Suppose G is not k-connected Case 1: Balanced vol(L) = Q(%)

So, there is a cut (L, S, R) where |S| < k Observe: If sample O (k) pairs of edges e = (x,x") and f = (y,y),
Assume vol(L) < vol(R) where vol(X) =), ,cx degu then, w.h.p., exists a sampled pair (e, f) wherex € Landy € R
Goal: w.h.p. find some cut (L', S’,R") where |S'| < k

Alg: For each sampled (e, f), if k(x,y) < k, return a cut

must obtain a cut once w.h.p.

Time: 0 (k) x 0(mk) = 0(mk?)
S
v 131< k =~

Case 2: Unbalanced vol(L) < The key tool: Local Vertex Connectivity

m
k

Suppose vol(L) € [2¢71, 21].

Informal: given a seed node x,
Find L 3 x of small volume
and has cut-size less than k

in sub-linear time

Observe: If sample 0(m/2%) edges e = (x, x")
then, w.h.p., exists a sampled edge e where x € L

Want: find the separator S “near” x in ~0(2%) time
Cannot spend linear time per sample

L s L s
18ic k ™~ 18ic k ~

The key tool: Local Vertex Connectivity Case 2: Unbalanced vol(L) < %

Input: Local(x, v, k) where x is a node (andv < m/k) Suppose vol(L) € [2¢71,21].
Output: either
* Declare that no L 3 x where [N(L)| < kand vol(L) < v Observe: If sample 0(m/2!) edges e = (x, x")
* Return L 3 x where [N(L)| < k then, w.h.p., exists a sampled edge e where x € L

Alg: For each sampled e, run Local(x, 2, k)

We can do this in time: 6(vk2) must return a cut once w.h.p.

No dependency on n! N Time: 0(m/2!) x 0(2'k?) = 0(mk?) o
ek B sk B

The O (mk?)-time Algorithm

1. Sample O () pairs of edges e = (x,x) and f = (3,y) "Tere "%
Vo = —

2. For each sampled (e, f), returnacutif k(x,y) < k Fione: 5(6) .

3. Fori= 1,...,log% . .
1. Sample O(m/2") edges e = (x,x") Find a cut w.h.p. when Pa rt 2 LOC8| Ve rtex COﬂ ﬂECtIVIty

. . m
2. Foreach sampled e, run Local(x, 2%, k) vol(L) = 2 < —
Time: 0(;) x 0(2'k?)

4. If did not find a cut, declare G is k-connected

Definition: Local Vertex Connectivity

Input: Local(x, v, k) where x is a node (andv < m/k)

Output: either
* Declare that no L 3 x where [N(L)| < kand vol(L) < v
* Return L 3 x where [N(L)| < k

Part 2.1: Reducing to directed edge connectivity

L s
181< k ™~
Definition: Local Vertex Connectivity Definition: Local Directed Edge Connectivity
Input: Local(x, v, k) where x is a node (andv < m/k) Input: Local(x, v, k) where x is a node (andv < m/k) . z) »
Output: either Output: either AT
e Declare that no L 3 x where |[N(L)| < kand vol(L) < v * Declare that no L 3 x where [§,,;(L) | < kand vol(L) < v
* Return L 3 x where |[N(L)| < k * Return L 3 x where |6,,,:(L)| < k
6out(L) =E(LV-L)
L s L

18I< k ~ 18I k ~

Reducing from vertex to directed edge connectivity

Definition: Local Directed Edge Connectivity

Input: Local(x, v, k) where x is a node (andv < m/k)

Output: either
* Declare that no L 3 x where |6,,;(L) | < k and vol(L) < v
* Return L 3 x where |5,,,:(L)| < k

.

181 k &~

Reducing from vertex to directed edge connectivity

N(L) Dot L)

\

L L

IN (L) =B (LI
Vol (L) =6 vel L))

Part 2.2: Warm-up

Suppose [y (L) = 1and |6, (L) = 0

o

What if |8;,,(L)| > 0 ?

)FS ‘(\ro\m S
;)\P\OV'@ o.x:zc-}l\/ VH ea‘ges

= Wmwst \90 Out O'F L! -RQVQB“S P.'HA sz ’RU‘M X2

(val(Ly<) . L) =0
&0 . .—) %041'()
2
Q\/\f
L L

|dea: Sampling an Explored Edge

~<

Nm\ DFS
will ge‘} stuck
ond obtain [

* Sample an explored edge (y’,y).
&« R“/ * Most explored edges are outside L,
so y should be outside L.

|

from x to

Part 2.3: The Algorithm

Soundness

Fix any L' 3 x. Suppose we reverse Py,,.

Ify ¢ LI: 5out(l‘,) < é‘out(l") -1
Y

Ify € L', 8§,,:(L) stays the same

/ /
L L

At the end 6,,,:(L") = 0 and
there were < k path-reversions

=)

Sout (L) < k initially

1. Time: k x 0(vk) = 0(vk?)

Repeat k times.

1.

2.
3.
4.

Terminate with no cut.

Grow DFS tree T from x
and explore exactly k - v edges

If get stuck, found the cut L'. Terminate
Sample an explored edges (', y).
Reverse the path Py, in T

2. Soundness: If L' is returr
then 6, (L") <k

3. Completeness: If no cut returned, then w.p. > 1/10 Can repeat 0(1) times
thereisno L 3 x, where vol(L) < v and 6,,:(L) < k ‘ to get high probability

Part 3: Recap

The O (mk?)-time Algorithm

1. Sample O (k) pairs of edges e = (x,x')and f = (y,y") "™ alzzg\ih(.lp(.ﬂ\
vo =2 O(—

2. For each sampled (e, f), returna cut if k(x,y) < k R —

3. Fori=1, ...,log%
1. Sample O(m/2") edges e = (x,x") Find a cut w.h.p. when
2. For each sampled e, run Local(x, 2%, k) vol(L) ~ 2' < m
Time: 0(;) x 0(2'k?)

4. |If did not find a cut, declare G is k-connected

