
Weekplan: Suffix Sorting

Philip Bille and Inge Li Gørtz

References and Reading

[1] Linear work suffix array construction, J. Kärkkäinen, P. Sanders, S. Burkhardt, J. ACM, 2006.

[2] Scribe notes from MIT.

[3] Algorithms on Strings, Trees, and Sequences, Chap. 5-9, D. Gusfield

[4] On the sorting-complexity of suffix tree construction, M. Farach-Colton, P. Ferragina, S. Muthukrishnan, J.
ACM, 2000

We recommend reading [1] and [2] in detail. [3] provides an extensive list of applications of suffix trees and [4]
is the first suffix-tree construction algorithm matching the sorting time bound.

Exercises

1 LSD and MSD Radix Sort Radix sort that process digits in right-to-left order is called LSD radix sort. If we
instead process digits in left-to-right order we call the algorithm MSD radix sort. Solve the following exercises.

1.1 Show that LSD radix sort correctly sorts any input.

1.2 Explain why each step in LSD radix sort must use a stable sorting algorithm.

1.3 Show that that are input for which MSD radix sort does not correctly sort any input.

1.4 [∗] Explain how to modify MSD radix sort to sort correctly.

2 [w] Prefix Doubling Suffix sort cocoa using prefix doubling.

3 Odd-Even Sampling Suppose we modify the sampling of suffixes in the DC3 algorithm such that the sampled
and non-sampled suffixes are those starting at even and odd positions, respectively. Determine if the algorithm
still works, i.e., show that it still works or explain where it fails.

4 [w] Suffix arrays Write the suffix array for the string mississippi$.

5 Searching in Suffix Arrays Let S be a string of length n and let SA be the suffix array of S. Given the SA and
S show how to support search(P) for a string P of length m in time O(m log n+ occ).

6 LCP array Let S be a string of length n, let ST be the suffix tree of S and let SA be the suffix array of S.
The LCP array LCP(S) is an array of length n, where LCP[0] = −1 and LCP[i] is the length of the longest

common prefix of the suffix SA[i − 1] and SA[i] for i ≤ 2≤ n.

6.1 [w] Write the LCP array for the string mississippi$.

6.2 Show how to obtain the LCP array from the suffix tree. Hint: Consider the stringdepth of the internal nodes.

6.3 Given two indicies i and j show how to efficiently compute the length of the longest common prefix of two
suffixes SA[i] and SA[j] using the LCP array.

1

7 Approximate String Matching with Hamming Distance The Hamming distance between two equal length
strings S1 and S2 is the number of positions i such that S1[i] ∕= S2[i]. Let P and S be strings over alphabet Σ of
lengths m and n, respectively. Given a parameter k, show how to compute all ending positions of substrings in S
whose Hamming distance to P is at most k. Hint: Suffix trees and longest common extensions.

8 Faster Search in Suffix Arrays Let S be a string of length n and let SA be the suffix array of S. In this exercise
we will improve the time for search(P) for a string of length m from O(m log n + occ) to O(m + log n + occ). A
comparison of character in P is redundant if the character has been compared before. The idea in the speed up is
to reduce the number of redundant comparisons to at most one in each iteration.

Let L be the left boundary in our binary search and let R be our right boundary (initially L = 0 and R= n−1).
In each iteration we query the position M = ⌈(R+ L)/2⌉ and update L and R accordingly.

Let l = lcp(L, P) and r = lcp(R, P). In the beginning of the search we explicitly compare P to the suffixes SA[1]
and SA[n] to find l and r.

8.1 Let min=min(l, r). Argue that all suffixes in SA[L, R] has a longest common prefix with P of length at least
min. Explain how to use this to speed up the binary search. This does not change the worst case bounds –
why?

8.2 We can use lcp(L, M) and lcp(R, M) to obtain better worst case bounds. Assume l > r. Explain what the
algorithm should do in each of the following cases:

• lcp(L, M)< l.

• lcp(L, M)> l.

• lcp(L, M) = l.

8.3 Given the S, SA and LCP show how to support search(P) for a string P of length m in time O(m+ log n+occ).

9 Suffix Tree Construction Bounds Solve the following exercises.

9.1 [∗] Show that any algorithm for suffix tree construction of a string of length n over an alphabet Σ must
use Ω(sort(n, |Σ|)) worst-case time. Hint: Show that an algorithm using o(sort(n, |Σ|) time would lead to a
contradiction.

9.2 [∗] Suppose that we drop the requirement that sibling edges are sorted from left-to-right. Show how con-
struct such a suffix tree in O(n) expected time. Hint: hash.

2

