
Tries and Suffix Trees

Inge Li Gørtz

1 Introduction

In the String Indexing Problem we are given a string S over an alphabet Σ. The problem is
to preprocess the string S into a data structure such that given a pattern P we efficiently
can answer queries of the form “Return the starting position of all occurrences of P
in S”. The goal is to obtain a data structure that uses little space and supports the
queries efficiently. In this note we will se how to solve the tree indexing problem in O(n)
and query time O(m + occ), where n is the length of the text S, m is the length of the
pattern P , and occ is the number of times P occurs in S.

We will also see how to index a collection of strings S = {S1, S2, . . . , Ss} such that we
given a pattern P efficiently can answer queries of the form “Is P a string in S?”

Preliminaries

Let S be a string of length n over an alphabet Σ. We use σ to denote the size of the
alphabet. Let S[i . . . j] denote the substring of S starting at position i and ending at
position j. A prefix of S is a substring of the form S[0 . . . j] and a suffix of S is a
substring of the form S[j . . . n− 1].

2 Tries

Let S = {S1, S2, . . . , Ss} be a set of strings from an alphabet Σ. Assume that the set S
is prefix-free, i.e., that no string in S is a prefix of another string in S1. Let n be the
total length of the strings in the set S. A trie of the set of strings S is a rooted ordered
tree TS with the following properties:

• Each edge in TS is labeled with a character from Σ.

• Edges from a node to its children are sorted from left-to-right alphabetically.

• Each root-to-leaf path represents a string in the set (obtained by concatenating the
labels of the edges on the path).

• Common prefixes of two strings share the same path maximally.

• For a node v in TS all the edges to its children have different labels.

1If S is not prefix-free we can turn it into a prefix-free set by adding $ in the end of each string in
the set, where $ is a new symbol not already in Σ.

1

S7

S5

S2S3

a b s

p

e p

a

t y

l

e

S1

o

a

t

S8 S4

S6 S9

t

a

r y

c

a

r t

Figure 1: Trie over the set of strings S = {boat, bay, ape, cat, apple, star, bat, car, stay}.

• Each leaf has a label indicating which string in the set it represents.

See Figure 1 for an example.
Each node v in TS represents the string obtained by concatenating the labels of the

edges on the path from the root to v. We will call this string str(v). A string represented
by a node in T is a prefix of one or more strings in the set S. The number of leaves in
a subtree rooted at a node v is equal to the number of strings from the set that has the
string str(v) as a prefix.

Properties The trie TS has the following properties:

• The number of nodes in TS is O(n).

• The number of leaves in TS is s.

• A node in TS has at most σ children.

• The height of TS is equal to the length of the longest string in S.

2.1 Matching

We can use the trie to search for a pattern P : Start in root and keep following edges
according to the next character in P . If we reach a leaf after having read all of P then P
is a string in the set S. If at some point during the search we reach a node that does not
have an outgoing edge labeled with the next character of P , then P is not a string in S.

The time it takes to search for a pattern P of length m is O(σm). In each node we
have to determine which edge to follow. A simple comparison to the character of each
edge out of the node gives us O(σ) time in each node. In total this gives us a running
time of O(σm), where m = |P |. For constant size alphabets this gives a search time of
O(m).

Lemma 1 Given a trie over a collection of strings of total length n over an alphabet of
size O(1) we can search for a pattern P of length m in O(m) time.

2

2.1.1 Prefix Search

We can also use the trie to search for all strings that starts with P , i.e. that has P as a
prefix. Simply search for P the same way as before. If the search for P ends in a node
v after having read all characters of P then all strings that corresponds to a leaf in the
subtree of v starts with the pattern P . We can now return all such strings by traversing
the subtree and returning the values stored in the leaves.

Example If we search for P = st in the trie in Figure 1 we can see that S6 and S9 both
has P as a prefix.

The running time of a prefix search is O(m + |TS(v)|), where TS(v) is the subtree
rooted at v and |TS(v)| is the size of the subtree TS(v). In the worst case the size of
TS(v) is Θ(n). In the next section we will see how to improve the running time of a prefix
search to O(m+ occ), where occ is the number of strings that has P as a prefix.

2.2 Construction of tries

Assume that the alphabet has constant size. To build the trie we can use an incremental
algorithm inserting the strings one at a time. Let ni be the length of the string Si. To
insert a string Si into the trie TS , we first follow the path from the root matching Si until
we cannot continue any further. Since the set is prefix free the node v we end in will be
an internal node in TS . Assume we matched Si[1 . . . j] up til now. Then we add a path
starting in v with edge labels equal to the remaining part of Si, ie., Si[j + 1 . . . ni]. The
length of the new inserted path is ni − j. The time to insert the string Si is O(ni): We
use O(j) time to follow the path and O(ni − j) to insert the new path.

The total time to insert all the strings is bounded by

s∑
i=1

O(ni) = O(n).

2.3 Large alphabets

If the size of the alphabet is non-constant then we can use a dictionary data structure in
each node to quickly find the correct edge to follow.

If we use a balanced binary search tree the the time spent in each node is O(log σ),
giving us a search time of O(m log σ). The time to construct the trie is then

s∑
i=1

O(ni log σ) = O(n log σ).

If we use a hashtable then the time spent in each node is expected O(1), giving us an
expected search time of O(m) and O(n) expected construction time.

3 Compact Tries

In this section we will show how to speed up the running time of the prefix search and
at the same time save space.

3

S7S5 S2S3

a b

e p
a

t y

S1

o

S8 S4 S6 S9

r y

c

r t

s t a
a

a
t

p

l
e

S7S5 S2S3

S3[1..2] S7[1]

S3[3] S5[3..5]

S7[2]

S7[3] S2[3]

S1 S8 S4 S6 S9

S6[4] S9[4]S8[3] S4[3]

S6[1..3]

S1[2..4]

S8[1..2]

(a)

(b)

Figure 2: (a) shows the tree T ′ obtained from the trie in Figure 1 by contracting paths.
(b) shows the compact trie over the set of strings S = {boat, bay, ape, cat, apple, star,
bat, car, stay}. It can be obtained from (a) by replacing labels on edges with indexes
into the strings.

The trie TS over the set of strings S can have many nodes with only one child and
there can be long paths of nodes with a single child. We construct a new tree T ′

S by
contracting each such path into a single edge as follows. Merge all nodes with only one
child with their parent, and concatenate the label of the edge out of v with the label of
its parent. This gives us a tree where all internal nodes have at least two children. The
number of nodes in this tree is O(s). See example in Figure 2(a).

The tree T ′
S still uses O(n) space since the total length of all labels can be strictly

larger than the number of nodes in the tree. But we can replace the labels/strings on the
edges with indexes into the set of strings. This requires that we save the set of strings,
so in total we still use O(n) space, but the space used by the trie is only O(s). This trie
is called the compact trie over the set S. See Figure 2(b) for an example.

Properties The compact trie Tc has the following properties:

• The number of nodes in Tc is O(s).

• The number of leaves in Tc is s.

• A node in Tc has at most σ children.

4

• The height of Tc is at most the length of the longest string in S.

The compact trie can be constructed in O(n) time for alphabets of constant size. For
large alphabets we can build the trie in O(n log σ) time using balanced binary search
trees as described in Section 2.3, or hash tables giving an expected construction time of
O(n).

Search We can search in the compact trie the same way as in the trie. Searching for a
pattern P of length m takes time O(m) if the size of the alphabet is a constant. If not
we can use the techniques from Section 2.3 to search in O(m log σ).

Prefix Search We can perform a prefix search the same way as in the trie. We might
end the search on the middle of an edge. To find all strings that have P as a prefix,
we traverse the subtree below that edge and return the name of the strings saved in the
leaves. The time is now improved compared to the prefix search in the trie. To prove
this we need the following property of trees:

Let T be a tree where all internal nodes have at least 2 children. Then the number of
internal nodes in T is at most the number of leaves in T -1.

We can now analyse the running time of a prefix query. The time for a prefix query
is the time to search for P plus the time to traverse the subtree Tc(e) under the edge e
that we end on. Each leaf in Tc(e) corresponds to a string in S that has P as a prefix,
thus the number of leaves in the subtree Tc(e) is equal to occ. Since all internal nodes
in a compact trie has at least two children then the number of internal nodes in Tc(e) is
at most occ. We can do the tree traversal in linear time in the size of the subtree. Thus
the running time of the query is O(m) + O(|Tc(e)|) = O(m) + O(occ) = O(m + occ) for
alphabets of constant size. For large alphabets the running time is O(m log σ + occ) if
we use balanced binary search trees and expected O(m+ occ) if we use hashtables.

Lemma 2 Given a compact trie over a collection of strings of total length n over an
alphabet of size O(1) we can search for a pattern P of length m in O(m) time and do
prefix searches in time O(m+ occ).

4 Suffix Trees

In this section we will show how to solve the string indexing problem in O(m) query time
and O(n) space.

A suffix tree of a string S is the compact trie over all suffixes of S. We add a new
character $ not already in Σ in the end of S to ensure that the set of the suffixes are
prefix free. Each leaf in the suffix tree has a number that indicates which suffix of S it
corresponds to. That is, the leaf corresponding to the whole string has label 0, the leaf
corresponding to the suffix starting at position two in string has label 1, and so on. See
Figure 3 for an example. When we draw suffix trees in this note, we will draw them with
labels on the edges as in Figure 3(b) for clarity. When implemented they should always
be with indexes into the string—otherwise the space will blow up by a linear factor.

5

2

4

a b

a
b

0

b

6

3 1

$

$

a
a

b

a
b

b

a

a
b
$

b
a
a
b
$

7

5

$ a

$

2

4

[1,1] [2,2]

[2,2]

0

6

3 1

[8,8]

[8,8]

[4,8]

[6,8]

[6,8]

[3,3]

[6,8] [4,8]

7

5

[8,8] [3,3]

(a) (b)

Figure 3: (a) Suffix tree for the string S = ababaab. (a) Suffix tree for S with labels on
the edges instead of indexes into the string.

4.1 Searching

We can use the suffix tree to find all occurrences of a pattern P in the string S. Just
match P from the root following edges according to the next character in P . If the search
stops before all of P is read, then P does not occur in S. Otherwise, the search stops on
some edge e (or in a node). Now traverse the subtree below e and return the labels of
the leaves in this subtree.

4.2 Analysis

Let n be the length of S. The suffix tree uses O(n) space, since there are n+ 1 suffixes of
the string S$. In addition to this we need to save the string S$. In total our index uses
O(n) space.

Using the algorithm to build a compact trie we can construct the suffix tree in
O(n2 log σ) time or O(n2) time if the alphabet has constant size.

There exists algorithms there can build a suffix tree in O(sort(n, σ)) time, where
O(sort(n, σ)) is the time it takes to sort n elements from an alphabet of size σ. Thus if
σ is constant the suffix tree can be constructed in O(n) time.

Lemma 3 Let S be a string of length n over an alphabet of length σ. A suffix tree for S
can be constructed in O(sort(n, σ)) time and it supports search for a pattern P of length
m in O(m log σ + occ) time.

If the size of the alphabet is constant then the suffix tree for S can be constructed in
O(n) time and it supports search for a pattern P of length m in O(m+ occ) time.

6

0

12

3

45 6

7

89

10

1112

13

14

15

16 17

18

19

$2 $1
a b c

ab

$2 d
$1

b

$2 a
b
c
a
a
b
d

c

a
a
b
d
$1

$1
b
a
a
b
$2

$2 a c

a
b

$2

b
c

a
a
b
d
$1

b
a
a
b
$2

b
a
b
c
b
a
a
b
$2

b
a
a
b
$2

a
a
b
d
$1

b
a
a
b
$2

a
a
b
d
$1

d $1

d $1

d
$1

$1

$1

$1

$1 $1

$1

$1

$1

$1$2

$2 $2

$2 $2

$2 $2

$2

Figure 4: Generalized suffix tree for S1 = ababcaabd and S2 = bbabcbaab.

4.3 Applications: Longest Common Substring

A string is a common substring of two strings S1 and S2 if it is a substring of both S1

and S2. A longest common substring of two strings S1 and S2 is the longest string that
is a substring of both S1 and S2.

Example S1 = ababcaabd and S2 = bbabcbaab. The common substrings of S1 and S2

are a, b, c, aa, ab, ba, bc, aab, abc, bab, babc. The substring babc is the longest common
substring of S1 and S2.

Generalized suffix tree We can use a suffix tree to find the longest common substring
of two strings S1 and S2 in linear time (assuming the size of the alphabet is O(1)). First
construct the suffix tree of the string S1$1S2$2, where $1 and $2 are new symbols not
already in Σ. Label each leaf with either a $1 or a $2 in the following way: If the suffix
corresponding to the leaf starts in S1$1 then label the leaf with $1 otherwise label it with
$2. This can be done in linear time once the suffix tree is constructed: Do a depth first
traversal of the tree to visit all leaves. In each leaf v check if the label indicating which
suffix the leaf corresponds to is less than or equal to the length of S1, ie., if label(v) ≤ |S1|.
If yes, then label the leaf v with $1 otherwise with $2. This takes linear time in the size
of the suffix tree. The size of the generalized suffix tree is O(|S1$1S2$2|) = O(|S1|+ |S2|).

This suffix tree T is also called the generalized suffix tree of S1 and S2 (See Figure 4
for an example).

Generalized suffix tree and longest common substring We can use the general-
ized suffix tree to find the longest common substring of S1 and S2. Any node in T that
has both a $1 and a $2 in its subtree corresponds to a substring that occurs in both S1

7

and S2 (try to convince yourself that this is true). That is, all nodes with both a $1 and a
$2 in its subtree corresponds to a common substring of S1 and S2. The string-depth of a
node v is the length of the string str(v) represented by v. The longest common substring
of S1 and S2 is the node with deepest string-depth among the nodes that has both a $1

and a $2 in its subtree. Next we show how to find this in linear time in the size of the
generalized suffix tree.

Algorithm To find the longest common substring of two strings S1 and S2 do the
following.

1. Build the generalized suffix tree T of S1$1 and S2$2.

2. Mark the nodes of the generalized suffix tree bottom up using a recursive algorithm.
A node is marked with a $i if one of its children is marked with $i. Then do a depth
first traversal of the tree, adding the string-depth of the node to each node (the
string-depth of node v is the string depth of its parent + the number of characters
on the edge between them). During the traversal keep track of the node with largest
string-depth that is marked with both $1 and $2.

3. After the depth first traversal we know the length ` of the longest common substring
of the two strings (`= string-depth(v)) and which node v that corresponds to this
substring. It is now straightforward to return the string str(v) represented by v.
Go to any leaf in the subtree of v. This leaf is labeled with a position p in S1$1S2$2

that is the starting poisition of an occurrence of str(v). If this position is in S1

return the string S1[p . . . p + `], if it is in S2 the substring corresponding to str(v)
starts at position p′ = p− (|S1| − 1) in S2 and we return the string S2[p

′ . . . p′ + `].

Analysis Assume the alphabet is of constant size. The time to build the generalized
suffix tree T is O(|S1| + |S2|) Both step 2 and 3 takes time linear in the size of the
suffix tree. In step 3 we use at most O(depth(T)) time to go to a leaf and then time
proportional to the length of the longest common substring. Both of these are bounded
by O(|S1| + |S2|). Therefore, the total time to find the longest common substring of S1

and S2 is O(|S1|+ |S2|), when the alphabet has constant size.
If the alphabet is large it takes O(sort(|S1|+ |S2|, σ)) to build the suffix tree. The rest

of the steps takes linear time as before. The time to find the longest common substring
of two strings for non-constant alphabets is therefore O(sort(|S1|+ |S2|, σ)).

8

