
Weekplan: Suffix Trees II

Philip Bille and Inge Li Gørtz

References and Reading

[1] Linear work suffix array construction, J. Kärkkäinen, P. Sanders, S. Burkhardt, J. ACM, 2006.

[2] Scribe notes from MIT.

[3] Algorithms on Strings, Trees, and Sequences, Chap. 5-9, D. Gusfield

[4] On the sorting-complexity of suffix tree construction, M. Farach-Colton, P. Ferragina, S. Muthukrishnan, J.
ACM, 2000

We recommend reading [1] and [2] in detail. [3] provides an extensive list of applications of suffix trees and [4]
is the first suffix-tree construction algorithm matching the sorting time bound.

Exercises

1 [w] Prefix Doubling Suffix sort cocoa using prefix doubling.

2 Odd-Even Sampling Suppose we modify the sampling of suffixes in the DC3 algorithm such that the sampled
and non-sampled suffixes are those starting at even and odd positions, respectively. Determine if the algorithm
still works, i.e., show that it still works or explain where it fails.

3 [w] Suffix arrays Let S be a string of length n. The suffix array of S is the array SA of length n+1 containing
the left-to-right sequence of labels of leaves in the suffix tree. Write the suffix array for the string mississippi$.

4 Searching in Suffix Arrays Let S be a string of length n and let SA be the suffix array of S. Given the SA and
S show how to support search(P) for a string P of length m in time O(m log n+ occ).

5 LCP array Let S be a string of length n, let ST be the suffix tree of S and let SA be the suffix array of S.
The LCP array LCP(S) is an array of length n, where LCP[0] = −1 and LCP[i] is the length of the longest

common prefix of the suffix SA[i − 1] and SA[i] for i ≤ 2≤ n.

5.1 [w] Write the LCP array for the string mississippi$.

5.2 Show how to obtain the LCP array from the suffix tree. Hint: Consider the stringdepth of the internal nodes.

5.3 Given two indicies i and j show how to efficiently compute the length of the longest common prefix of two
suffixes SA[i] and SA[j] using the LCP array.

6 Faster Search in Suffix Arrays Let S be a string of length n and let SA be the suffix array of S. In this exercise
we will improve the time for search(P) for a string of length m from O(m log n + occ) to O(m + log n + occ). A
comparison of character in P is redundant if the character has been compared before. The idea in the speed up is
to reduce the number of redundant comparisons to at most one in each iteration.

Let L be the left boundary in our binary search and let R be our right boundary (initially L = 0 and R= n−1).
In each iteration we query the position M = d(R+ L)/2e and update L and R accordingly.

Let l = lcp(L, P) and r = lcp(R, P). In the beginning of the search we explicitly compare P to the suffixes SA[1]
and SA[n] to find l and r.

1

6.1 Let min=min(l, r). Argue that all suffixes in SA[L, R] has a longest common prefix with P of length at least
min. Explain how to use this to speed up the binary search. This does not change the worst case bounds –
why?

6.2 We can use lcp(L, M) and lcp(R, M) to obtain better worst case bounds. Assume l > r. Explain what the
algorithm should do in each of the following cases:

• lcp(L, M)< l.

• lcp(L, M)> l.

• lcp(L, M) = l.

6.3 Given the S, SA and LCP show how to support search(P) for a string P of length m in time O(m+log n+occ).

7 Suffix Tree Construction Bounds Solve the following exercises.

7.1 [∗] Show that any algorithm for suffix tree construction of a string of length n over an alphabet Σ must
use Ω(sort(n, |Σ|)) worst-case time. Hint: Show that an algorithm using o(sort(n, |Σ|) time would lead to a
contradiction.

7.2 [∗] Suppose that we drop the requirement that sibling edges are sorted from left-to-right. Show how con-
struct such a suffix tree in O(n) expected time. Hint: hash.

2

