
Universal HashingbyPeter Bro MiltersenThis lecture note was written for the course \Pearls of Theory" at University ofAarhus. Most recent revision, March 5, 1998.1. IntroductionUniversal hashing is theory at its best! Hashing started out as a purely heuristicmethod for implementing symbol tables. It moved into the hardcore theory ofalgorithms with Carter and Wegman's analysis of the concept of universality. Itwent on to play an important role in several of the most important constructionsin abstract complexity theory and cryptography. And now, these constructionsstart to creep back into practice. Thus, having matured inside theory, hash-ing gets applied in ways the original symbol table implementors could not havedreamed of! In this note, we track the exciting career of the hash function.2. The prehistory of universal hashingThe heuristic concept of hashing, as is nowadays known to most (all?) program-mers, was introduced by Dumey in 1956 [4]. It was introduced as a solution tothe symbol table problem (nowadays called the dictionary problem).In the dictionary problem, we are given a sequence of Insert(k,x), Delete(k),and Lookup(k) operations which must be performed on-line (i.e. one operationmust be completely performed, before the next is considered) on an initiallyempty set S. Insert(k,x) inserts the key k with associated information x intothe set, Delete(k) deletes the key k and its associated information from the set,and Lookup(k) returns the information associated with k, if k is indeed in theset.For simplicity in the analysis which is to come, we assume that single keys andsingle pieces of associated information �t into single machine words, but that twokeys or two pieces of information do not �t into a machine word. This is oftencalled, believe it or not, the transdichotomous model of computation.Exercise 1 (for language freaks) Explain the term transdichotomous.The goal is to perform the operations while minimizing the time and space used.The space used is measured in terms of memory registers. In general, we aim for1



linear space, i.e. space comparable to the size of the set being stored. Of course,the size of the set varies as the operations are performed, and this causes somecomplications in the solutions we'll look at. For simplicity, we will assume thatwe know a single upper bound N on the size of the set at all times, and we willallow ourselves to use O(N) registers, even when the set is much smaller (but seeProblem 19).Exercise 2 Recall some solutions to the dictionary problem. Do they use linearspace? How fast are they?Dumey's solution to the dictionary problem was the following. Assume thekeys and pieces of information are both taken from the universe U . Pick some\crazy",\chaotic",\random" function h (the hash function) mapping U tof1; : : : ; Ng. Initialize an array A[1::N ]. At any given time, in A[i] we keep alinked list containing the keys k currently in the set, for which h(k) = i. For eachkey we attach the associated information. This is called chained hashing. Thereare other kinds of hashing which we'll happily ignore.Exercise 3 (for language freaks) Why hash-function?Exercise 4 Convince yourself that it is fairly simple to program this data struc-ture, not much worse than implementing a single linked list.Intuitively, it is fairly clear why this solution should work well. If the functionh is indeed \crazy", \chaotic" and \random", mapping our set S to f1; : : : ; Ngusing h should behave as if we were just distributing elements of S at random inN buckets. Since the size of S is at most N , we should expect the buckets to bequite small in general. As the crazy function, Dumey suggested h(x) = x mod pfor p a prime.Exercise 5 Why a prime??Hashing is widely used in practice and experience shows that it does indeed workvery well! But what about a rigorous analysis? It is easy to see that the aboveintuition cannot be formalized so that the argument above will be true for allsets S.Exercise 6 Why not?Even given the the answer to exercise 6, hashing was intensely analyzed in thetwo decades following Dumey's invention. The problem exposed in exercise 6 wasdealt with in two di�erent ways.1. In some papers, it is assumed that the set to be stored is not a worst case2



set. Instead, we assume that it is chosen according to some probabilitydistribution or has some structural property we can explore.2. In some papers, we do not assume anything about the set S, but we assumethat h really is a random function, i.e. chosen uniformly at random fromthe set of all functions mapping U to f1; : : : ; Ng.There are papers of both kinds with deep and beautiful mathematics. However,both kinds do leave you a bit nervous about the relevance or the meaningfulnessof the results. The �rst kind is based on assumptions on the input set whichmay be hard or impossible to guarantee in practice, and the second is simplybased on a false assumption! No matter how long time you stare at the functionh(x) = x mod p, it will not morph into a random function.3. An analysis of the second kindIn spite of the above, it turns out that the �rst really satisfactory analysis ofhashing is based on an analysis of the second kind, so we shall proceed alongthose lines.Theorem 7 Assume that h really is chosen uniformly at random from the setof all functions between U and f1; : : : ; Ng. Furthermore assume that h can beevaluated in constant time. Then the expected time required to perform anysequence of m operations (satisfying the upper bound N on the maximum size ofthe set) by chained hashing is O(m).In other words, we can perform the operations in constant expected amortizedtime per operation!Exercise 8 The constant amortized time bound in the above theorem may seemso attractive that the reader may consider actually ensuring that the premise istrue, i.e. actually choosing h uniformly at random from the set of all functionsbetween U and f1; : : : ; Ng. This is, as we shall see later, in a way a good idea,but explain the big problem.Let's prove the theorem. Assume that the sequence of operations isop1(k1);op2(k2); : : : ;opm(km)with opi 2 fInsert;Delete;Lookupg. We are only mentioning the key-parameters ki, since the information-parameters xi are unimportant for the anal-ysis. 3



We choose h at random, and we want to compute the expectation of the ran-dom variable T (op1(k1);op2(k2); : : : ;opm(km)) = Pi T (opi(ki)) By linearity ofexpectation (a pearl of probability theory!) we haveE[Xi T (opi(ki))] =Xi E[T (opi(ki))]:So, we only have to show that for any i, E[T (opi(ki))] is O(1), and we are done.Let's �x i and look at the term E[T (opi(ki)]. Let's call the appearance of the setwhen this operation is to be performed (i.e. the set after i� 1 operations) for Si.Then E[T (opi(ki))]� 1 + E[length of linked list at entry h(ki) after instruction i� 1]= 1 + E[#fy 2 Si j h(y) = h(ki)g]= 1 + E 24Xy2Si ( 1; if h(y) = h(ki)0; otherwise 35= 1 + Xy2Si E "( 1; if h(y) = h(ki)0; otherwise #= 1 + Xy2Si Pr[h(y) = h(ki)]� 1 + 1 + Xy2SinfkigPr[h(y) = h(ki)]� 1 + 1 +N(1=N)= 3 4. Universal hashingOf course, the answer to exercise 8 leads you to the conclusion that the resultin the last section is nice but irrelevant. However, Carter and Wegman in theirseminal paper on universal hashing [2] saw the way out: Look at the analysis ofthe last section. Where did we actually use anything about the probability spaceassociated with h? We didn't use much, only the following fact, which we'll callproperty (U):(U) For all x 6= y;Pr[h(x) = h(y)] � 1=N .Now, Carter and Wegman's simple but brilliant idea was this: We will actuallychoose h at random when we initialize our data structure, but not from the space4



of all functions. We will choose h from a much smaller space, but make sure thatthe property (U) holds. This leads to the following de�nition:De�nition Let H be a class of functions mapping U to f1; : : : ; Ng. We say thatH is universal, if for any x 6= y in U , and an h, chosen uniformly at random inH, we have Pr[h(x) = h(y)] � 1=N:Also, we say that H is nearly universal, if we only have Pr[h(x) = h(y)] � 2=N .Exercise 9 (for advertising agents to be) Why universal?The de�nition of nearly universal is not standard, and is added here mainly forconvenience.The theorem above now generalizes into:Theorem 10 Choose h uniformly at random from a (nearly) universal familyH mapping U to f1; : : : ; Ng. Assume that members of H can be evaluated inconstant time. Then the expected time required to perform any sequence of moperations (satisfying the upper bound N on the maximum size of the set) bychained hashing is O(m).We now only have to exhibit a small, e�cient, (nearly) universal family.Theorem 11 Let p be a prime greater than N . Let H be the family mappingf0; 1; : : : ; p � 1g to f0; : : : ; N � 1g, containing, for each a 2 f0; : : : ; p � 1g, thefunction ha(x) = (ax mod p) mod N . Then H is nearly universal.Before we show the theorem, let us note that this does indeed solve our problem!If our universe U is, say f0; 1; 2; : : : ; 2w � 1g (i.e. the set of w-bit words), we canchoose p to be a prime between 2w and 2w+1 (such a prime exists). When thecomputation begins, we can select a random hash function from H and store allinformation about it (i.e. p and a) in less than 3 machine words. Compare thisto the answer to exercise 8. We can also evaluate the hash function in constanttime, using standard arithmetic operations.The proof of near universality is clever, but simple:Pr[ha(x) = ha(y)]= Pr[(ax mod p) mod N = (ay mod p) mod N ]= Pr[(ax mod p)� (ay mod p) 2 f�bp� 1N cN; : : : ;�2N;�N; 0; N; 2N; : : : ; bp� 1N cNg]= Pr[a(x� y) mod p 2 R];where R = f0; N; 2N; : : : ; bp�1N cN; p�N; p� 2n; : : : ; p�bp�1N cNg. Since Z=pZ is5



a �eld, the last probability is equal toPr[a 2 R(x� y)�1] = jR(x� y)�1jp = jRjp � 2pNp = 2NIf we want a truly universal family (i.e. with property (U)) satis�ed, we canachieve this by taking as members of H all functions of the form ha;b(x) = (ax+b mod p) mod N with a 6= 0. We shall not show this (near universality is su�cientfor the dictionary application).We have now virtually shown the following theorem:Theorem 12 The dynamic dictionary problem can be implemented using O(N)space and expected constant amortized time per operation.One slight problem with our solution is the prime p which much be found some-how. However, since it only depends on the size of the universe, it is reasonableto assume that it is given for free. An alternative is to use universal familieswhich are not based on primes. A particularly nice one which also avoids integerdivision and uses only one multiplication is the following: The universe is againU = f0; 1; : : : ; 2w�1g. The name of a hash function is just an odd number a in U .To hash a key x, we multiply x by a. This gives a number in f0; 1; : : : ; 22w � 1g,i.e. two consecutive words. Now, if we want the range of the family to be, say,f0; 1gl, we just pick the l most signi�cant bits of the least signi�cant word of ax.The proof that this does indeed have the near universality property can be foundin [3]. The proof is only slightly more complicated than the above.5. The further adventures of the hash functionA few years passed before people started noticing how generally useful a tooluniversal hashing is, but by the late eighties, dictionaries were only one examplein a long list of (�rst theoretical and later practical) applications. Why is hashinguseful in general? A good rule of thump is that whenever you have a nice patternor some useful information and want to see it completely and utterly destroyed(the Beavis and Butthead objective), hashing might come in useful. Now, whywould we want to destroy nice patterns or information? Well, we already sawthe dictionary example; in that example a \nice" pattern might be all the keysending up in one list! In the rest of the note, we show three other examples,covering algorithms, cryptography, and complexity theory. They are just the tipof an iceberg. For further information, we recommend the survey by Luby andWigderson [5]. 6



6. DerandomizationConsider the MAXCUT problem: Given a graph G = (V;E), �nd a two-colouringof the vertices � : V ! fred;blueg so as to maximizec(�) = #f(x; y) 2 Ej�(x) 6= �(y)g:Here is a simple randomized algorithm which outputs a coloring �, so thatE(c(�)) = jEj=2: Just colour each vertex randomly (red or blue, each withprobability 1/2). Then,E[c(�)] = Xfx;yg2E Pr[�(x) 6= �(y)] = jEj=2Now, what about a deterministic, polynomial time, algorithm with the sameperformance guarantee, i.e. outputting �, so that c(�) � jEj=2? Simple: Let Hbe a universal family, mapping V to f0; 1g. The analysis still holds if we chooseh 2 H at random and �(v) = h(v). But we know we can choose H so that it onlycontains jV jO(1) members, so we can try them all in polynomial time and outputthe coloring with the maximum c-value.Reference: Luby and Wigderson [5].7. A movie scriptTwo secret agents, Alice and Bob, communicate using the Internet. This is notvery secure, and indeed, Alice and Bob know that evil Claire regularly eavesdropon their conversation. Tomorrow, Alice is going to transmit to Bob a particularlysensitive piece of information containing 1000 bits, so they are going to encryptthe information. Claire is an employee at BRICS and has therefore unlimitedcomputational resources, so Alice and Bob do not want to employ a scheme basedon computational assumptions (such as RSA). Instead, they are going to use aninformation theoretically secure scheme. A month ago, Alice and Bob met inperson, ipped a coin 2000 times, and both wrote down the resulting bit sequence.They agreed to use the bits as one time pads in their next two sensitive messages(sensitive messages always contain 1000 bits). So far, no sensitive messages havebeen sent, so the secret bits are all unused, but tomorrow, Alice is going to takeher sensitive message, compute a bitwise XOR with the �rst 1000 secret bits, andsend the result to Bob, who will decrypt it by a similar operation. Claire willnot be able to get any information from the message, even using her network ofPowerPocketMultiIndys. 7



Exercise 13 Why not?However, even the best plan can fail. During the night Bob contacts Alice (usingthe insecure channel). A few minutes ago, Bob surprised Doug (an agent ofClaire) in his o�ce. He shot and killed him immediately, but in Doug's hand wasthe secret 2000 bit sequence (Bob admits that he probably shouldn't have left iton his desk) and on the o�ce terminal Bob saw:talk eclaire@gorm.daimi.aau.dk[connection established]10001111101101110100001110000100100010000000110101100000101100100111011111110000010001011111010101101110101111001000000100001001001100101100111110010000101111110110000101111010010000110101000111011111Aaaaargh...so now Claire knows something about the secret sequence; she's received exactly200 bits. Now, if these bits were 200 consecutive bits of the secret sequence, Aliceand Bob could just use a di�erent portion of the sequence, but that does not seemto be the case, Alice and Bob do not recognize the transmitted sequence at all.They must be 200 bits about the sequence, the nature of which only Claire nowknows.Exercise 14 Give examples of information, other than speci�c bits of the secretkey, which could be useful to Claire (if she has some idea about the nature of thesensitive message to be sent tomorrow).Now, how do Alice transmit the message tomorrow without compromising theunconditional security demand? Alice and Bob decide to sleep on it.And now, the exciting climax of the story: The next day, Alice and Bob agree,over the insecure channel, on a family of universal hash functions H mappingf0; 1g2000 to f0; 1g1000. If they decide on the family whose members are ha;b(x) =(ax + b mod p) mod N , we have that jHj � 24002. Then, Alice ips a coin afew thousand times and thereby determines a random member h 2 H. Thedescription of h is sent to Bob, again over the insecure channel (Claire hears allthis). Then they both hash their secret key, reducing it to 1000 bits, and Alicesends her sensitive message, using the hashed key as a one-time pad. Whateverinformation Claire received about the secret key, it is completely and utterlydestroyed by the hashing, and Alice's last message looks completely random toClaire.Of course, Alice and Bob will now only be able to send this single message8



using their key, so they'll have to meet in person again before they sent the nextsensitive message. Perhaps that'll teach Bob to stop leaving secret stu� on hisdesk.THE END. Any similarity to real persons (living or dead), events, or o�ces, ispurely coincidentalSince this was meant as an exciting movie script for a general audience, wesimpli�ed the last part a bit. In a precise information theoretic sense which wewon't go into here, we can expect Claire to be able to learn about 21000�2000+200 =2�800 bits about the sensitive message. But for all practical purposes, that's 0.Reference: Bennett et al [1].8. Complexity classesRecall that the circuit satis�ability problem CIRCUIT SAT problem is NP -complete. Thus, if P 6= NP , there is no way to decide in polynomial time ifthe input variables of a Boolean circuit can be assigned truth values so that thecircuit evaluates to True. It follows that there is no way of �nding satisfyingassignments to satis�able circuits in polynomial time.Exercise 15 Why does the last statement follow from the �rst?Of course, we are interested in tracking the source of the di�culty. Here is onepossible hypothesis: The source of di�culty is the fact that a typical satis�ablecircuit has quite a few di�erent satisfying assignments, and a search algorithmtrying to track one of them by sophisticated means (such as genetic search) willbe confused by the multitude of solutions leaving inconsistent hints in the searchspace. A more precise way to phrase that hypothesis is(H) NP 6= P , so CIRCUIT SAT is not in P, but whenever there is just onesatisfying assignment to a Boolean circuit, we can �nd it in polynomial time.Well, the reasons for suggesting (H) are arguably pretty lame, so it is probablyreasonable to assume \not (H)" like we usually assume P 6= NP and get onwith our lives. But one of the points of complexity theory is to minimize ourignorance by making as few unproven assumptions as possible. Assuming P 6=NP is usually regarded as pretty safe. Is \not (H)" equally (or almost as) safe?Universal hashing gives us the answer.Theorem 16 (H) implies that every problem in NP can be solved by a MonteCarlo algorithm in polynomial time. 9



By a Monte Carlo algorithm we mean a randomized algorithm which may answerincorrectly, but on any input x, the probability of an incorrect answer is (e.g.)2�1000. Thus, you are very unlikely to ever see an incorrect answer, and, if youonce suspect an answer to be incorrect, you can ask again! So \not (H)" seemsalmost as safe an assumption as P 6= NP .A sketch of the theorem is as follows: Assume (H) is true, and let A be thealgorithm which �nds unique satisfying assignments in polynomial time. We nowshow that CIRCUIT SAT can be solved by a Monte Carlo algorithm in polynomialtime. Since CIRCUIT SAT is NP -complete, the theorem follows.The Monte Carlo algorithm does the following: Given a circuit C, it constructs arandom sequence of circuits, C1; C2; : : : ; C2r (with r = number of variable of C),so that1. If C is unsatis�able, the Ci's are also unsatis�able.2. If C is satis�able, then, with non-negligible probability, at least one of theCi's is uniquely satis�able.Furthermore, the size of the Ci's should be polynomial in C.If we can do this, we have solved our problem: We just give the Ci's to A, andsee if it �nds satisfying assignments to any of them. If it does, we know that C issatis�able. If not, we iterate, with new Ci's. After having asked A a number oftimes, and no satisfying assignments are ever found, we know that C is extremelyunlikely to be satis�able, because we know that with overwhelming probability,one of the Ci's we've tried must have been uniquely satis�able, and A would havefound a satisfying assignment to such a Ci.So how are the Ci's de�ned? We take a universal family H mapping f0; 1gr !f0; 1g and pick random members h1; h2; : : : ; h2r. Now, we construct Ci so thatCi(x), C(x) ^ h1(x) = 1 ^ h2(x) = 1 ^ � � � ^ hi(x) = 1This works! The intuitive reason is as follows: Each time another clause hi(x) = 1is added, we can expect the number of satisfying assignments to be approximatelyhalved. When we get to C2r, they are almost certainly gone completely. But then,it is likely that the last circuit that had a satisfying assignment will have exactly1, because a jump from, say, 2 satisfying assignments to 0 is less likely than goingfrom 2 to 1 to 0. Furthermore, if the family H is a small, e�cient, family (likethe ones we saw earlier), the size of Ci will be polynomial in C.Reference: Valiant and Vazirani [6]. 10



9. ProblemsProblem 17 Arnold Dummy decides to implement hashing using Dumey's func-tion h(x) = (x mod p) for some prime p. Of course, the range of this function isf0; : : : ; p � 1g and Dummy wants the hash function to contain 1000 cells - and1000 is not a prime. Dummy decides to hack his way out of this by choosingp = 1327 and de�ning h(x) = (x mod p) mod 1000. Is this a good idea?Problem 18 Let A be a 0-1 matrix of dimensions r � s. N By linear algebra,we can view A as a linear map over the �eld Z2 = f0; 1g mapping (Z2)s to (Z2)r(just do \usual" matrix multiplication except that everything is done modulo 2).Show that the set of all r� s matrices form a universal family of hash functions.Discuss advantages and disadvantages of using this in practice instead of the onesbased on integer arithmetic.Problem 19 In theorem 12, we assume that we know the upper bound N on theset in advance and that we are allowed to use space O(N) at all times. Showthat this assumption can be removed, i.e. that there is a solution to the dictio-nary problem with expected constant amortized time per operation and using spacewhich is, at any given time, proportional to the current size of the set.Problem 20 [Oyster of the week] The performance guarantee on the dictio-nary problem is expected constant amortized time. However, individual operationsare not guaranteed any good worst case performance.In the static dictionary problem, we do not have Insert's or Delete's, insteadwe have an Init operation which take a set of keys and associated informationand produces a data structure representing the set. The data structure is neverchanged, we only perform Lookup's on itDevise a scheme for static dictionaries, so that any set is converted into a datastructure of linear space, and so that any Lookup operation can be performed inworst case constant time (!!!!!)References[1] C.H. Bennett, G. Brassard, J.-M. Robert, Privacy ampli�cation by publicdiscussion, SIAM Journal on Computing 17 (1988) 210{229.[2] J.L. Carter, M.N. Wegman, Universal classes of hash functions, J. Comp.Sys. Sci. 18 (1979) 143-154. 11



[3] M. Dietzfelbinger, T. Hagerup. J. Katajainen, M. Penttonen, A reliable ran-domized algorithm for the closest-pair problem, technical report 513, Fach-bereich Informatik, Universit�at Dortmund, 1993.[4] A.I. Dumey, Computers and Automation 5 (1956) 6{9.[5] M. Luby, A. Wigderson, Pairwise Independence and Derandomization, tech-nical report TR-95-035, ICSI, 1995.[6] L. Valiant, V. Vazirani, NP is as easy as detecting unique solutions, Theo-retical Computer Science 47 (1986) 85{93.
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