Approximation Algorithms

02282
Inge Li Gørtz

Approximation algorithms

- Fast. Cheap. Reliable. Choose two.
- NP-hard problems: choose 2 of
- optimal
- polynomial time
- all instances
- Approximation algorithms. Trade-off between time and quality.
- Let $\mathrm{A}(\mathrm{I})$ denote the value returned by algorithm A on instance I . Algorithm A is an $a-$ approximation algorithm if for any instance I of the optimization problem:
- A runs in polynomial time
- A returns a valid solution
- $A(I) \leq a \cdot O P T$, where $a \geq 1$, for minimization problems
- $A(I) \geq a \cdot O P T$, where $a \leq 1$, for maximization problems

Examples

- Acyclic Graph Given a directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, pick a maximum cardinality set of edges from E such that the resulting graph is acyclic.
- Give a 1/2-approximation algorithm for this problem.

- Minimum Maximal Matching

- A matching in a graph $G=(V, E)$ is a subset of edges $M \subseteq E$, such that no two edges in M share an endpoint.
- A maximal matching is a matching that cannot be extended, i.e., it is not possible to add an edge from $E \backslash M$ to M without violating the constraint.
- Design a 2-approximation algorithm for finding a minimum cardinality maximal matching in an undirected graph.

Examples

- Acyclic Graph Given a directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, pick a maximum cardinality set of edges from E such that the resulting graph is acyclic.
- Give a $1 / 2$-approximation algorithm for this problem.
- Lower bound - what is the best we can hope for?
- Arbitrarily number the vertices and pick the bigger of the two sets, the forward going edges and the backward going edges.

- Minimum Maximal Matching

- A matching in a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a subset of edges M \subseteq E , such that no two edges in M share an endpoint.
- A maximal matching is a matching that cannot be extended, i.e., it is not possible to add an edge from Elsetminus M to M without violating the constraint.
- Design a 2 -approximation algorithm for finding a minimum cardinality maximal matching in an undirected graph.
- Lower bound: Any maximal matching is at least half the maximum maximal matching. Why?

Load balancing

Scheduling on identical parallel machines

\square
\square

- n jobs to be scheduled on m identical machines.
- Each job has a processing time t_{j}.
- Once a job has begun processing it must be completed.

- Goal. Schedule all jobs so as to minimize the maximum load (makespan):

$$
\operatorname{minimize} T=\max _{i=1 \ldots n} T_{j}
$$

Simple greedy (list scheduling)

- Simple greedy. Process jobs in any order. Assign next job on list to machine with smallest current load.
- The greedy algorithm above is a 2 -approximation algorithm:
- polynomial time \checkmark
- valid solution \checkmark
- factor 2

Simple greedy (list scheduling)

Simple greedy (list scheduling)

Simple greedy (list scheduling)

\square
\square

Approximation factor

\square
\square

- Lower bounds:
- Each job must be processed:

$$
T^{*} \geq \max _{j} t_{j}
$$

- There is a machine that is assigned at least average load:

$$
T^{*} \geq \frac{1}{m} \sum_{j} t_{j}
$$

Approximation factor

- i: job finishes last.
- All other machines busy until start time s of i. $\left(s=T_{i}-t_{i}\right)$
- Partition schedule into before and after s.
- After $\leq \mathrm{T}^{*}$.
- Before:
- All machines busy $=>$ total amount of work $=\mathrm{m} \cdot \mathrm{s}$:

$$
m \cdot s \leq \sum_{j} t_{j} \quad \Rightarrow s \leq \frac{1}{m} \sum_{j} t_{j} \leq T^{*}
$$

- Length of schedule $=s+t_{i} \leq T^{*}+T^{*}=2 T^{*}$.

Lower bound

Lower bound

ロロロロロロロロロロロロロロロロロロロロ \square

Lower bound

ロロロロロロロロロロロロロロロロロロロロ \square

Longest processing time rule

\square
\square
\square

- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.

Longest processing time rule

- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
- LPT is a is a $3 / 2$-approximation algorithm:
- polynomial time \checkmark
- valid solution \checkmark
- factor $3 / 2$

Longest processing time rule: factor $3 / 2$

- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
- Assume $\mathrm{t}_{1} \geq \ldots . \geq \mathrm{t}_{\mathrm{n}}$.
- If $\mathrm{n} \leq \mathrm{m}$ then optimal.
- Lower bound: If $n>m$ then $T^{*} \geq 2 t_{m+1}$.
- Factor 3/2:
- Before $\leq \mathrm{T}^{*}$
- After: i job that finishes last.
- $t_{i} \leq t_{m+1} \leq T^{*} / 2$.
- $\mathrm{T} \leq \mathrm{T}^{*}+\mathrm{T}^{\star} / 2 \leq 3 / 2 \mathrm{~T}^{*}$.
- Tight?

Longest processing time rule: factor $4 / 3$

- Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next job on list to machine as soon as it becomes idle.
- Assume $\mathrm{t}_{1} \geq \ldots . \geq \mathrm{t}_{\mathrm{n}}$.
- Assume wlog that smallest job finishes last.
- If $t_{n} \leq T^{*} / 3$ then $T \leq 4 / 3 T^{*}$.
- If $t_{n}>T^{*} / 3$ then each machine can process at most 2 jobs in OPT.
- Lemma. For any input where the processing time of each job is more than a third of the optimal makespan, LPT computes an optimal schedule.
- Theorem. LPT is a 4/3-approximation algorithm.
k-center

The k-center problem

- Input. An integer k and a set of sites S with distance $d(i, j)$ between each pair of sites $i, j \in S$.
- d is a metric:
- $\operatorname{dist}(\mathrm{i}, \mathrm{i})=0$
- dist(i,j) $=\operatorname{dist}(\mathrm{j}, \mathrm{i})$
- $\operatorname{dist}(\mathrm{i}, \mathrm{I}) \leq \operatorname{dist}(\mathrm{i}, \mathrm{j})+\operatorname{dist}(\mathrm{j}, \mathrm{l})$
- Goal. Choose a set $\mathrm{C} \subseteq S,|C|=k$, of k centers so as to minimize the maximum distance of a site to its closest center.

$$
\mathrm{C}=\operatorname{argmin}_{\mathrm{C} \subseteq \mathrm{~V},|\mathrm{C}|=\mathrm{k}} \max _{\mathrm{i} \mathrm{\in v}} \operatorname{dist}(\mathrm{i}, \mathrm{C})
$$

- Covering radius. Maximum distance of a site to its closest center.

k-center: Greedy algorithm

- Greedy algorithm.
- Pick arbitrary i in S.
- Set C = \{i\}
- while $|\mathrm{C}|<k$ do
- Find vertex j farthest away from any cluster center in C
- Add j to C
- Return C

- Greedy is a 2-approximation algorithm:
- polynomial time \checkmark
- valid solution
- factor 2

k-center analysis: optimal clusters

- Optimal clusters: each vertex assigned to its closest optimal center.

k-center analysis

- r^{*} optimal radius.
- Claim: Two vertices in same optimal cluster has distance at most $2 r^{\star}$ to each other.

k-center

k-center: analysis greedy algorithm

- r^{*} optimal radius.
- Show all vertices within distance $2 r^{*}$ from a center.
- Consider optimal clusters. 2 cases.

1. Algorithm picked one center in each optimal cluster

- distance from any vertex to its closest center $\leq 2 r^{*}$.

2. Some optimal cluster does not have a center.

- Some cluster have more than one center.
- Distance between these two centers $\leq 2 r^{*}$.
- When second center in same cluster picked it was the vertex farthest away from any center.
- Distance from any vertex to its closest center at most $2 r^{*}$.

Bottleneck algorithm

- Assume we know the optimum covering radius r .
- Bottleneck algorithm.
- Set R := S and C := Ø.
- while $R \neq \varnothing$ do
- Pick arbitrary i in R.
- Add j to C
- Remove all vertices with $d(j, v) \leq 2 r$ from R.
- Return C
- Example: $\mathrm{k}=3 . \mathrm{r}=4$.

Analysis bottleneck algorithm

- r^{*} optimal radius.
- Covering radius is at most $2 r=2 r^{*}$.
- Show that we cannot pick more than k centers:
- We can pick at most one in each optimal cluster:
- Distance between two nodes in same optimal cluster ≤ 2 r. *
- When we pick a center in a optimal cluster all nodes in same optimal cluster is removed.

Analysis bottleneck algorithm

- r^{*} optimal radius.
- Can use algorithm to "guess" r^{\star} (at most n^{2} values).
- If algorithm picked more than k centers then $r^{*}>r$.
- If algorithm picked more than k centers then it picked more than one in some optimal cluster.
- Distance between two nodes in same optimal cluster $\leq 2 r$.*
- If more than one in some optimal cluster then $2 r<2 r^{\star}$.

