
Approximation Algorithms
02282

Inge Li Gørtz

• Fast. Cheap. Reliable. Choose two.

• NP-hard problems: choose 2 of

• optimal

• polynomial time

• all instances

• Approximation algorithms. Trade-off between time and quality.

• Let A(I) denote the value returned by algorithm A on instance I. Algorithm A is an α-
approximation algorithm if for any instance I of the optimization problem:

• A runs in polynomial time

• A returns a valid solution

• A(I) ≤ α ∙ OPT, where α ≥ 1, for minimization problems

• A(I) ≥ α ∙ OPT, where α ≤ 1, for maximization problems

Approximation algorithms

• Acyclic Graph Given a directed graph G=(V,E), pick a maximum cardinality set of
edges from E such that the resulting graph is acyclic.

• Give a 1/2-approximation algorithm for this problem.

• Minimum Maximal Matching
• A matching in a graph G=(V,E) is a subset of edges M ⊆ E, such that no two

edges in M share an endpoint.

• A maximal matching is a matching that cannot be extended, i.e., it is not

possible to add an edge from E \ M to M without violating the constraint.

• Design a 2-approximation algorithm for finding a minimum cardinality maximal

matching in an undirected graph.

Examples
• Acyclic Graph Given a directed graph G=(V,E), pick a maximum cardinality set of

edges from E such that the resulting graph is acyclic.

• Give a 1/2-approximation algorithm for this problem.

• Lower bound - what is the best we can hope for?

• Arbitrarily number the vertices and pick the bigger of the two sets, the forward

going edges and the backward going edges.

• Minimum Maximal Matching
• A matching in a graph G=(V,E) is a subset of edges M \subseteq E, such that no

two edges in M share an endpoint.

• A maximal matching is a matching that cannot be extended, i.e., it is not

possible to add an edge from E\setminus M to M without violating the constraint.

• Design a 2-approximation algorithm for finding a minimum cardinality maximal

matching in an undirected graph.

• Lower bound: Any maximal matching is at least half the maximum maximal

matching. Why?

Examples

Load balancing
• n jobs to be scheduled on m identical machines.

• Each job has a processing time tj.

• Once a job has begun processing it must be completed.

• Tj: Load of machine j.

• Goal. Schedule all jobs so as to minimize the maximum load (makespan):

Scheduling on identical parallel machines

 minimize T = maxi=1…n Tj

• Simple greedy. Process jobs in any order. Assign next job on list to machine with
smallest current load.

• The greedy algorithm above is a 2-approximation algorithm:

• polynomial time

• valid solution

• factor 2

Simple greedy (list scheduling)

✓
✓

Simple greedy (list scheduling)

Simple greedy (list scheduling) Simple greedy (list scheduling)

• Lower bounds:

• Each job must be processed:

• There is a machine that is assigned at least average load:

Approximation factor

T ⇤ � max
j

tj

T ⇤ � 1

m

X

j

tj

• i: job finishes last.

• All other machines busy until start time s of i. (s = Ti - ti)

• Partition schedule into before and after s.

• After ≤ T*.

• Before:

• All machines busy => total amount of work = m⋅s:

• Length of schedule = s + ti ≤ T*+ T* = 2T*.

m ⋅ s ≤ ∑
j

tj ⇒ s ≤
1
m ∑

j

tj ≤ T*

Approximation factor

i

Lower bound Lower bound

Lower bound

• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next
job on list to machine as soon as it becomes idle.

Longest processing time rule

• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next
job on list to machine as soon as it becomes idle.

• LPT is a is a 3/2-approximation algorithm:

• polynomial time

• valid solution

• factor 3/2

Longest processing time rule

✓

✓

• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next
job on list to machine as soon as it becomes idle.

• Assume t1 ≥ …. ≥ tn.

• If n ≤ m then optimal.

• Lower bound: If n > m then T* ≥ 2tm+1.

• Factor 3/2:

• Before ≤ T*

• After: i job that finishes last.

• ti ≤ tm+1 ≤ T*/2.

• T ≤ T* + T*/2 ≤ 3/2 T*.

• Tight?

Longest processing time rule: factor 3/2

• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next
job on list to machine as soon as it becomes idle.

• Assume t1 ≥ …. ≥ tn.

• Assume wlog that smallest job finishes last.

• If tn ≤ T*/3 then T ≤ 4/3 T*.

• If tn > T*/3 then each machine can process at most 2 jobs in OPT.

• Lemma. For any input where the processing time of each job is more than a third of

the optimal makespan, LPT computes an optimal schedule.

• Theorem. LPT is a 4/3-approximation algorithm.

Longest processing time rule: factor 4/3

k-center

• Input. An integer k and a set of sites S with distance d(i,j) between each pair of sites
i,j ∈ S.

• d is a metric:

• dist(i,i) = 0

• dist(i,j) = dist(j,i)

• dist(i,l) ≤ dist(i,j) + dist(j,l)

• Goal. Choose a set C ⊆ S , |C| = k, of k centers so as to minimize the maximum
distance of a site to its closest center.

• Covering radius. Maximum distance of a site to its closest center.

The k-center problem

C = argminC⊆V,|C|=k maxi∈V dist(i,C)

2 3
7

4
1

5 4

10
6

8

5

5
4

7
6 2

5

3

• Greedy algorithm.

• Pick arbitrary i in S.

• Set C = {i}

• while |C| < k do

• Find vertex j farthest away from any cluster center in C

• Add j to C

• Return C

• Greedy is a 2-approximation algorithm:

• polynomial time

• valid solution

• factor 2

k-center: Greedy algorithm

2 3
7

4
1

5 4

10
6

8

5

5
4

7
6 2

5

3

✓
✓

• Optimal clusters: each vertex assigned to its closest optimal center.

k-center analysis: optimal clusters

2 3
7

4
1

5 4

10
6

8

5

5
4

7
6 2

5

3

• r* optimal radius.

• Claim: Two vertices in same optimal cluster has distance at most 2r* to each other.

k-center analysis

≤r*
≤r*

≤2r*

k-center

2 3
7

4
1

5 4

10
6

8

5

5
4

7
6 2

5

3

• r* optimal radius.

• Show all vertices within distance 2r* from a center.

• Consider optimal clusters. 2 cases.

1. Algorithm picked one center in each optimal
cluster

• distance from any vertex to its closest
center ≤ 2r*.

2. Some optimal cluster does not have a center.

• Some cluster have more than one center.

• Distance between these two centers ≤ 2r*.

• When second center in same cluster picked it

was the vertex farthest away from any center.

• Distance from any vertex to its closest center

at most 2r*.

k-center: analysis greedy algorithm

≤r*
≤r*

≤2r*

≤r*

≤r*
≤2r*

≤2r*

• Assume we know the optimum covering radius r.

• Bottleneck algorithm.

• Set R := S and C := Ø.

• while R ≠ Ø do

• Pick arbitrary i in R.

• Add j to C

• Remove all vertices with d(j,v) ≤ 2r from R.

• Return C

• Example: k= 3. r = 4.

Bottleneck algorithm

2 3
7

4
1

5 4

10
6

8

5

5
4

7
6 2

5

3

• r* optimal radius.

• Covering radius is at most 2r = 2r*.

• Show that we cannot pick more than k centers:

• We can pick at most one in each optimal cluster:

• Distance between two nodes in same optimal cluster ≤ 2r.*

• When we pick a center in a optimal cluster all nodes in same optimal

cluster is removed.

Analysis bottleneck algorithm

≤r*
≤r*

≤2r*

2r

• r* optimal radius.

• Can use algorithm to “guess” r* (at most n2 values).

• If algorithm picked more than k centers then r* > r.

• If algorithm picked more than k centers then it picked more than one in some
optimal cluster.

• Distance between two nodes in same optimal cluster ≤ 2r.*

• If more than one in some optimal cluster then 2r < 2r*.

Analysis bottleneck algorithm

≤r*
≤r*

≤2r*

