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• Fast. Cheap. Reliable. Choose two.

• NP-hard problems: choose 2 of


• optimal

• polynomial time

• all instances


• Approximation algorithms. Trade-off between time and quality.


• Let A(I) denote the value returned by algorithm A on instance I. Algorithm A is an α-
approximation algorithm if for any instance I of the optimization problem:

• A runs in polynomial time

• A returns a valid solution

• A(I) ≤  α ∙ OPT, where α ≥ 1, for minimization problems  

• A(I) ≥  α ∙ OPT, where α ≤ 1, for maximization problems  

Approximation algorithms

• Acyclic Graph Given a directed graph G=(V,E), pick a maximum cardinality set of 
edges from E such that the resulting graph is acyclic. 

• Give a 1/2-approximation algorithm for this problem.


• Minimum Maximal Matching  
• A matching in a graph G=(V,E) is a subset of edges M ⊆ E, such that no two 

edges in M share an endpoint. 

• A maximal matching is a matching that cannot be extended, i.e., it is not 

possible to add an edge from E \ M to M without violating the constraint. 

• Design a 2-approximation algorithm for finding a minimum cardinality maximal 

matching in an undirected graph.

Examples
• Acyclic Graph Given a directed graph G=(V,E), pick a maximum cardinality set of 

edges from E such that the resulting graph is acyclic. 

• Give a 1/2-approximation algorithm for this problem.

• Lower bound - what is the best we can hope for?

• Arbitrarily number the vertices and pick the bigger of the two sets, the forward 

going edges and the backward going edges. 


• Minimum Maximal Matching  
• A matching in a graph G=(V,E) is a subset of edges M \subseteq E, such that no 

two edges in M share an endpoint. 

• A maximal matching is a matching that cannot be extended, i.e., it is not 

possible to add an edge from E\setminus M to M without violating the constraint. 

• Design a 2-approximation algorithm for finding a minimum cardinality maximal 

matching in an undirected graph.

• Lower bound: Any maximal matching is at least half the maximum maximal 

matching. Why?

Examples



Load balancing
• n jobs to be scheduled on m identical machines.

• Each job has a processing time tj.

• Once a job has begun processing it must be completed.

• Tj: Load of machine j.

• Goal. Schedule all jobs so as to minimize the maximum load (makespan):

Scheduling on identical parallel machines

 minimize T = maxi=1…n Tj

• Simple greedy. Process jobs in any order. Assign next job on list to machine with 
smallest current load.


• The greedy algorithm above is a 2-approximation algorithm:

• polynomial time

• valid solution

• factor 2

Simple greedy (list scheduling)

✓
✓

Simple greedy (list scheduling)



Simple greedy (list scheduling) Simple greedy (list scheduling)

• Lower bounds:


• Each job must be processed:


• There is a machine that is assigned at least average load: 

Approximation factor

T ⇤ � max
j

tj

T ⇤ � 1

m

X

j

tj

• i: job finishes last.


• All other machines busy until start time s of i. (s = Ti - ti)


• Partition schedule into before and after s.


• After ≤ T*.


• Before: 


• All machines busy => total amount of work = m⋅s:





• Length of schedule = s + ti  ≤  T*+ T* = 2T*.

m ⋅ s ≤ ∑
j

tj ⇒ s ≤
1
m ∑

j

tj ≤ T*

Approximation factor

i



Lower bound Lower bound

Lower bound

• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next 
job on list to machine as soon as it becomes idle. 

Longest processing time rule



• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next 
job on list to machine as soon as it becomes idle. 


• LPT is a is a 3/2-approximation algorithm:

• polynomial time

• valid solution

• factor 3/2

Longest processing time rule

✓

✓

• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next 
job on list to machine as soon as it becomes idle. 


• Assume t1  ≥ …. ≥ tn. 

• If n ≤ m then optimal.

• Lower bound: If n > m then T* ≥ 2tm+1.

• Factor 3/2:


• Before ≤ T*

• After: i job that finishes last. 


• ti ≤ tm+1 ≤ T*/2.

• T ≤ T* + T*/2 ≤ 3/2 T*.


• Tight?

Longest processing time rule: factor 3/2

• Longest processing time rule (LPT). Sort jobs in non-increasing order. Assign next 
job on list to machine as soon as it becomes idle. 


• Assume t1  ≥ …. ≥ tn. 

• Assume wlog that smallest job finishes last.

• If tn ≤ T*/3 then T ≤ 4/3 T*.

• If tn > T*/3 then each machine can process at most 2 jobs in OPT.

• Lemma. For any input where the processing time of each job is more than a third of 

the optimal makespan, LPT computes an optimal schedule. 

• Theorem. LPT is a 4/3-approximation algorithm.

Longest processing time rule: factor 4/3

k-center



• Input. An integer k and a set of sites S with distance d(i,j) between each pair of sites 
i,j ∈ S.


• d is a metric:

• dist(i,i) = 0

• dist(i,j) = dist(j,i)

• dist(i,l) ≤ dist(i,j) + dist(j,l) 


• Goal. Choose a set C ⊆ S , |C| = k, of k centers so as to minimize the maximum 
distance of a site to its closest center.


• Covering radius. Maximum distance of a site to its closest center.

The k-center problem

C = argminC⊆V,|C|=k maxi∈V dist(i,C)
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• Greedy algorithm.

• Pick arbitrary i in S.

• Set C = {i}

• while |C| < k do


• Find vertex j farthest away from any cluster center in C

• Add j to C


• Return C


• Greedy is a 2-approximation algorithm:

• polynomial time

• valid solution

• factor 2

k-center: Greedy algorithm
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• Optimal clusters: each vertex assigned to its closest optimal center.

k-center analysis: optimal clusters
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• r* optimal radius.

• Claim: Two vertices in same optimal cluster has distance at most 2r* to each other.

k-center analysis

≤r*
≤r*

≤2r*



k-center
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• r* optimal radius.

• Show all vertices within distance 2r* from a center.

• Consider optimal clusters. 2 cases.


1. Algorithm picked one center in each optimal 
cluster 

• distance from any vertex to its closest 
center ≤ 2r*.


2. Some optimal cluster does not have a center. 

• Some cluster have more than one center.

• Distance between these two centers ≤ 2r*.

• When second center in same cluster picked it 

was the vertex farthest away from any center. 

• Distance from any vertex to its closest center 

at most 2r*. 

k-center: analysis greedy algorithm

≤r*
≤r*

≤2r*

≤r*

≤r*
≤2r*

≤2r*

• Assume we know the optimum covering radius r.

• Bottleneck algorithm.


• Set  R := S and C := Ø. 

• while R ≠ Ø do


• Pick arbitrary i in R.

• Add j to C

• Remove all vertices with d(j,v) ≤ 2r from R.


• Return C


• Example: k= 3. r = 4.

Bottleneck algorithm
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• r* optimal radius.

• Covering radius is at most 2r = 2r*.

• Show that we cannot pick more than k centers:


• We can pick at most one in each optimal cluster: 

• Distance between two nodes in same optimal cluster ≤ 2r.*

• When we pick a center in a optimal cluster all nodes in same optimal 

cluster is removed.

Analysis bottleneck algorithm

≤r*
≤r*

≤2r*

2r



• r* optimal radius.

• Can use algorithm to “guess” r* (at most n2 values).

• If algorithm picked more than k centers then r* > r.


• If algorithm picked more than k centers then it picked more than one in some 
optimal cluster.


• Distance between two nodes in same optimal cluster ≤ 2r.*

• If more than one in some optimal cluster then 2r < 2r*. 

Analysis bottleneck algorithm

≤r*
≤r*

≤2r*


