
Dynamic Graphs

Graphs model: knowledge, social networks, road networks, molecular
structures, electrical circuits, the internet...
Any of these prone to change? Yes!
Motivates the study of dynamic graphs.

Dynamic graph algorithms:
build a data structure for the graph
update the data structure when edges appear or disappear
use the data structure to answer questions about the graph.

Example: Connectivity.
Can you compute the connected components of a graph? (and how fast?)
If only edges appear (never leave), can you update connectivity info?
Updating connectivity in general is highly non-trivial.
Today: Updating connectivity in a forest.

Eva Rotenberg Dynamic Graphs



Dynamic forest connectivity

Model: We have at all times a forest.
An edge may join or leave the forest.
Want to answer questions of the form: “is u in the same forest as v?”

Answer: Sleator & Tarjan’s Link-Cut Trees.
Able to update and answer connectivity information in O(log n) worst-case
time, where n is the number of vertices.
Bonus: With a little extra work, it can be used to maintain all sorts of extra
information about the trees and about relations between vertices.

First:
Why is polylogarithmic time, i.e. O((log n)c) time, so attractive?
Warm-up case: Forest of paths.

Eva Rotenberg Dynamic Graphs



Polylogarithmic time. The P-class of dynamic graphs.

Dynamic graph on n vertices, we generally have the following operations:
delete(e) deleting an edge e,
insert(u, v) inserting an edge between u and v ,
relation(u, v) asking about some relation between u and v .

An example of a relation could be connected (are u and v connected? Yes/no),
but it could also be lowest common ancestor or max flow or shortest path or . . ..
Input size. How many bits to encode an operation?
O(1) to encode which operation it is, plus at most O(log n) to encode which
vertex, vertex pair, or edge is involved. = total O(log n) bits.
So a polynomial-time algorithm would process these in O((log n)c) time.
For some constant c. (We call this polylogarithmic time.)
Question: If a problem admits a polylogarithmic time solution for dynamic
graphs, does this say anything about the time it takes to answer the problem
for static (i.e. non-dynamic) graphs?
Bonus info: Not all near-linear-time solvable problems admit polylogarithmic
update time dynamic solutions! Even “planar dijkstra” takes Ω(

√
n) to update.

Research question: Which problems are polylog-updatable?

Eva Rotenberg Dynamic Graphs



Warm-up case: connectivity in a forest of paths

Model We have at all times a forest of paths.
An edge may join or leave the forest of paths.
Query: connected(u, v).
Idea: Build a balanced binary tree over each path.
Connectivity: u and v are connected if they are in the same tree. O(log n) time.
Cut(u,v): Tree surgery. O(log n) time.
E.g. rotate u to be root, cut child containing v , rebalance.
Link(u,v): Two cases.

linking a head and a leaf – concatenate paths – easy. O(log n).
otherwise, we need to invert the direction of one path. Invert:

Set a lazy mirroring bit.
When visiting internal node x , dissolve lazy bit by switching left and right
child, and pushing lazy bit to left and right child.

Exercise: Can you use/extend this data structure to answer connectivity queries
(connected(u, v))? Distance queries (dist(u, v))? Minimum edge-label on
path? Sum of edge-labels on path? (Solve exercise 2 and 1).

Eva Rotenberg Dynamic Graphs



Connectivity in general trees. Sketch.

Model: We have at all times a forest of trees.
Idea: Heavy path decomposition.

Vertex v has heavy child c if weight of subtree is large: w(c) > 1
2 w(v)

Connected: u and v can each find the root of their tree by following log n light
edges, and log n head-of-heavy-path calls. O(log n) total time.
Link: If v is root of its tree, then linking u and v is easy. Simply add v as a
child of u. Are we done? No, because now u is heavier. How many light edges
may become heavy? At most log n on the path from u to its root. O(log n).
Now we need two things: make-root, and cut.
Cut: Simply deleting the edge between v and its parent u may cause the
opposite problem to that above. Up to log n edges may become light.
Idea: Define for each heavy edge e an indicator lefttilt(e) of how far the heavy
edge is from being light. Navigate the balanced binary tree to find the “least
heavy” heavy edge. If its heaviness is smaller than w(v), lighten it, recurse.
We can store information about lightness lazily like flip.
Make-root(v): Pretend weight of v is ∞. Now root’s heavy path: r → v . Flip
direction of that path. (Undo pretend ∞.)
Flipping direction: Need to maintain both lefttilt and righttilt! (Implicitly.)

Eva Rotenberg Dynamic Graphs



Connectivity (et al.) in general trees. Result.

Given a dynamic graph that is at all times a forest,
we may perform link, cut, and answer connected queries
in worst-case O((log n)2) time.
In fact, a closer analysis shows, worst-case O(log n) time.
Bonus: We may augment the path decomposition to maintain extra
information.
The balanced trees over the heavy paths can be used to answer questions
about segments of the paths.
Exercise: Can you use/extend the data structure to answer lowest common
ancestor queries? Distance queries? Minimum edge-label on path?

Eva Rotenberg Dynamic Graphs



Future work

Connectivity if edges only arrive – easy.
In a forest of paths – easy’ish.
In a forest of general trees – doable (today)
In general graphs – ... there are polylog-time algorithms that are either
amortised, or in expectation, or both. Deterministic worst-case polylog?
One of the exercises was about colouring dynamic trees. Which k-colourable
graphs may we efficiently, worst-case k + O(log n)-colour? Open question!
In general, we may ask: Which near-linear time computable questions about
graphs are updatable in polylogarithmic time? Which are not?
Dynamic graphs allows us to study fundamental graph problems – again – from
a new perspective. (More dynamic graphs next week.)

Eva Rotenberg Dynamic Graphs


