Dynamic bounded out-degree orientations

Eva Rotenberg

References and reading

Dynamic Representations of Sparse Graphs, Gerth St0lting Brodal and Rolf Fagerberg, 1999

Exercises

1 Prerequisites

- 1.1 Give a data structure for adjacency that has O(m) space and answers adjacency in $O(\log n)$ time. How fast can you update your adjacency data structure? Can you get $O(\log n)$?
- 1.2 For a static, non-changing graph. Give a data structure that answers adjacency queries in O(1) worst-case time and takes O(n + m) space. Can you construct it in linear expected time?

2 Arboricity and out-degrees

- 2.1 Show how to out-orient a forest, such that each vertex has at most 1 out-edge.
- 2.2 Give an example of a graph which can be out-oriented such that each vertex has at most 1 out-edge, but which needs 2 forests to cover its edges.(I.e. it is not a forest, but the edge set is the union of 2 forests.)
- 2.3 [*] (i) Show that a graph with a Δ -orientation has a vertex of degree $\leq 2\Delta$, (ii) use this to divide its edges into $O(\Delta)$ forests.

3 Simplification

We study the statement of Lemma 2 in the setting where $\delta = 2c$.

3.1 Let G be a graph of arboricity $\leq c$. If vertex u has out-degree 2c, show that there is a vertex v of degree < 2c and a directed path u to v of length $\leq \log_2 n$.

4 Dynamic forest orientation

In this section, we consider the question of dynamically orienting a forest with worst-case update time.

- 4.1 Consider a dynamic forest of paths. Consider the task of giving it a 1-orientation. Give an example of an update sequence where O(n) vertices need to change direction.
- 4.2 Show that one can efficiently 2-orient a dynamic forest of paths.
- 4.3 Show that one can 2-orient a dynamic forest with $O(\log n)$ worst-case time per insertion or deletion. (Hint: path decompositions.)

5 Acyclic \triangle -orientations [*]

[*] Consider now the case where you want a Δ -orientation that is furthermore *acyclic*, so that there are no directed cycles in the oriented graph. Modify the algorithm (and the analysis) to accommodate this.