
Dynamic bounded out-degree orientations.

Dynamic bounded out-degree orientations
Problem definition
Motivation

Algorithm. Analysis:
Augmenting path lemma
All-knowing algorithm
Potential argument

Lower bound

Eva Rotenberg Dynamic Graphs II



Dynamic d-orientations

A sparse graph is one where there are few edges per vertex.
A way to measure sparseness is arboricity, the treeishness of the graph, which is
both the fewest forests it takes to cover its edges, and also a bound on the
number of edges per vertex in any induced subgraph:

Arboricity ≤ c ⇔
The edge set is the union of ≤ c forests ⇔
Any subgraph J on nJ vertices has at most c(nJ − 1) edges

Problem: Given a dynamic graph whose arboricity never exceeds c,
orient the edges so that each vertex has O(c) out-edges.
Motivation: If each edge stores its out-neighbours,
we can then check adjacency in O(c) time.

Eva Rotenberg Dynamic Graphs II



Algorithm

Algorithm for ∆-orientation.
Delete(e) – just delete it.
Insert((u, v)) – Two cases.
Safe: if out-degree of u less than ∆ – just insert it.
Overflow: otherwise, take all out-edges of u, and flip their direction.
This may cause some u’s out-neighbours to overflow, so

recursively repeat on the overflowing vertices,
until the stack of overflowing vertices is empty.

Correctness? If the algorithm terminates, correct ∆-orientation.
Today: Amortised analysis.

Eva Rotenberg Dynamic Graphs II



Augmenting path lemma.

Let G have arboricity c. Meaning: everytime you have a subset J , there are at
most ca. c edges per vertex in J .

|E(J)|
|V (J)| − 1 ≤ c ⇔ |E(J)| ≤ c · (|V (J)| − 1) ⇔ |E(J)|

c < |V (J)|

Note: E(J) are the edges of G where both endpoints are in J .
Lemma: Let δ > c. Given u with δ out-edges. Then there exists
a path from u of length logδ/c(n) to some v with less than δ out-edges.
Idea: u has δ out-neighbours. If one of them has small out-degree, we are
done. Otherwise, they each have δ out-neighbours. Keep going.
Formally: Let Vi be the vertices reachable by a path of length i from u. By
induction, |Vi | > (δ/c)i . Start: |V1| = δ > 1.
Step: Assume |Vi | > (δ/c)i . Consider Vi and its neighbours. How many edges?
δ|Vi | out-edges. So at least δ(δ/c)i edges. How many vertices? Arboricity c:
E(J)/c < V (J). That makes at least δ · (δ/c)i/c vertices. Vi+1 ≥ (δ/c)i+1.
Now: When is Vj ≥ n? When j is logδ/c n. So by logδ/c n there must be a
vertex of out-degree less than δ.

Eva Rotenberg Dynamic Graphs II



The omniscient algorithm

For the sake of analysis, consider the case where the whole sequence of updates
is known in advance.
Note that the role of deletions and insertions can be swapped by looking
forward or backward in time.
Consider maintaining a δ-orientation. (δ > c).
Every time a vertex u has out-degree δ+ 1, we just saw some vertex v exists, of
out-degree < δ, such that we may augment the path u −→ v of length at most
logδ/c n. Augmenting this path causes e logδ/c nd edges to change direction.

So: Deletion 0 changes, insertion dlogδ/c ne changes.
Or, reversing the time-line, insertion 0 changes, deletion dlogδ/c ne changes.

Eva Rotenberg Dynamic Graphs II



Putting it all together

The algorithm: Do nothing until some vertex u’s outdegree exceeds ∆, and
then revert edge directions, possibly causing other vertices to overflow, and
keep handling overflow-vertices until the stack is empty.
Now, let’s set ∆ = 3δ, and δ = 2c.
For the sake of analysis, consider the orientations made by the omniscient
algorithm.

Say an edge is good if its orientation is consistent with the omniscient
orientation, and bad otherwise.
For amortised analysis, we will use a potential that is simply counting the
bad edges.

If we can show that handeling an overflowing vertex is payed for by the
potential, then our amortised analysis works.
When a vertex overflows, it has out-degree ∆+ 1 = 3δ + 1. At most δ of those
are good, so there are 2δ + 1 bad edges.
So, by flipping the orientation of all these edges, our potential will decrease by
at least δ. Thus paying for all the O(δ) incurring edge-reorientations.
Thus, amortised times: O(1) for insertion and O(c + log n) for deletion.
Adjacent in O(c) worst-case time.

Eva Rotenberg Dynamic Graphs II



Lower bound

Assume c is a constant, and is an upper bound on the arboricity of the
dynamic graph.
Then if we force out-degree ≤ c, we may have to perform Ω(n)
edge-reorientations per insert/delete.
Idea: Think of a path. If we cut and link, we may force Ω(n) reorientations.
For larger c, the construction is a union of paths. Still, a cut and link in one of
these paths is what shows the lower bound.
(More on blackboard, see also Thm. 4.)

Eva Rotenberg Dynamic Graphs II


