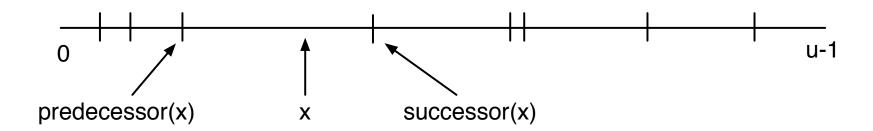
- Predecessor Problem
- van Emde Boas
- Tries

- Predecessor Problem
- van Emde Boas
- Tries

- Predecessor problem. Maintain a set S ⊆ U = {0, ..., u-1} supporting
 - predecessor(x): return the largest element in S that is $\leq x$.
 - successor(x): return the smallest element in S that is $\geq x$.
 - insert(x): set $S = S \cup \{x\}$
 - delete(x): set $S = S \{x\}$



- · Applications.
 - Simplest version of nearest neighbor problem.
 - Several applications in other algorithms and data structures.
 - Central problem for internet routing.

- Routing IP-Packets
 - Where should we forward the packet to?
 - To address matching the longest prefix of 192.110.144.123.
 - Equivalent to predecessor problem.
 - Best practical solutions based on advanced predecessor data structures [Degermark, Brodnik, Carlsson, Pink 1997]

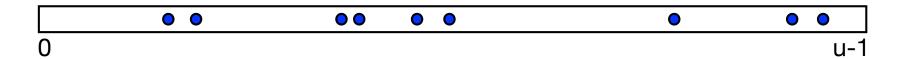
• Which solutions do we know?

- Predecessor Problem
- van Emde Boas
- Tries

van Emde Boas

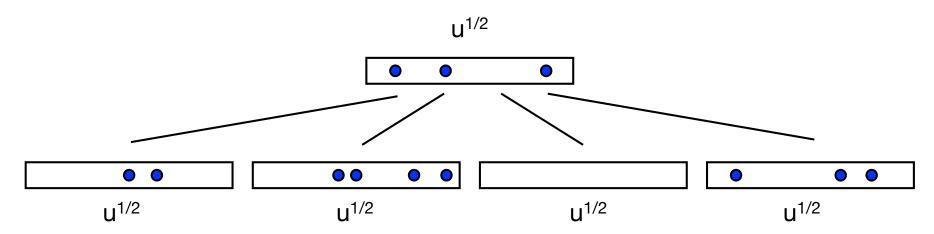
- Goal. Static predecessor with O(log log u) query time.
- Solution in 5 steps.
 - Bitvector. Very slow
 - Two-level bitvector. Slow.
 - •
 - van Emde Boas [Boas 1975]. Fast.

Solution 1: Bitvector



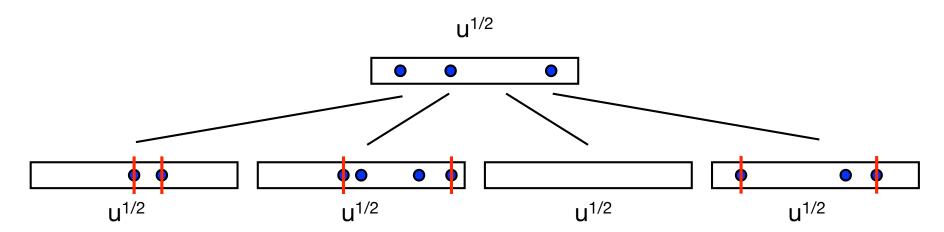
- Data structure. Bitvector.
- Predecessor(x): Walk left.
- Time. O(u)

Solution 2: Two-Level Bitvector



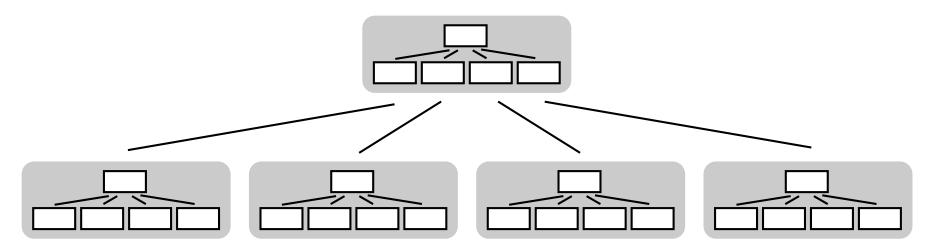
- Data structure. Top bitvector + u^{1/2} bottom bitvectors.
- Predecessor(x): Walk left in bottom + walk left in top + walk left bottom.
 - To find indices in top and bottom write $x = hi(x) \cdot 2^{1/2 \cdot \log u} + lo(x) = hi(x) \cdot u^{1/2} + lo(x)$
 - Index in top is hi(x) and index in bottom is lo(x).
- Time. $O(u^{1/2} + u^{1/2} + u^{1/2}) = O(u^{1/2})$

Solution 3: Two-Level Bitvector with less Walking



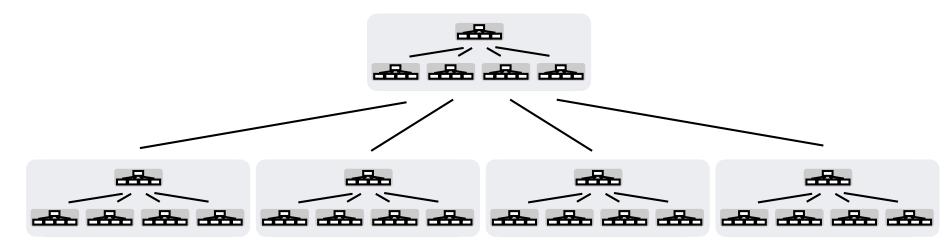
- Data structure. Solution 2 with min and max for each bottom structure.
- Predecessor(x):
 - If hi(x) in top and $lo(x) \ge min$ in bottom[lo(x)] walk left in bottom.
 - if hi(x) in top and lo(x) < min or hi(x) not in top walk left in top. Return max at first non-empty position in top.
- We either walk in bottom or top.
- Time. O(u^{1/2})
- Observation.
 - Query is walking left in one vector of size $u^{1/2} + O(1)$ extra work.
 - Why not walk using a predecessor data structure?

Solution 4: Two-Level Bitvector within Top and Bottom



- Data structure. Apply solution 3 to top and bottom structures of solution 3.
- Walking left in vector of size $u^{1/2}$ now takes $O((u^{1/2})^{1/2}) = O(u^{1/4})$ time.
- Each level adds O(1) extra work.
- Time. O(u^{1/4})
- Why not do this recursively?

Solution 5: van Emde Boas



- Data structure. Apply recursively until size of vectors is constant.
- Time. $T(u) = T(u^{1/2}) + O(1) = O(\log \log u)$
- Space. O(u)

van Emde Boas

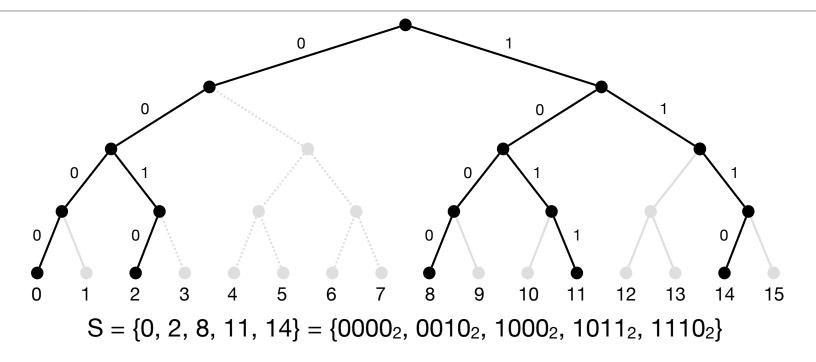
- Theorem. We can solve the static predecessor problem in
 - O(u) space.
 - O(log log u) time.
- Combined with perfect hashing we can reduce space to O(n) [Mehlhorn and Näher 1990].
- Easy to add insert and delete.

- Predecessor Problem
- van Emde Boas
- Tries

Tries

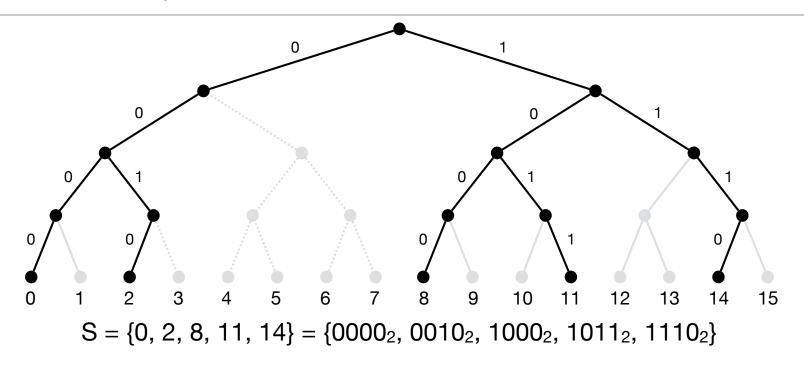
- Goal. Static predecessor with O(n) space and O(log log u) query time.
- Equivalent to van Emde Boas but different perspective. Simpler?
- Solution in 3 steps.
 - Trie. Slow and too much space.
 - X-fast trie. Fast but too much space.
 - Y-fast trie. Fast and little space.

Tries



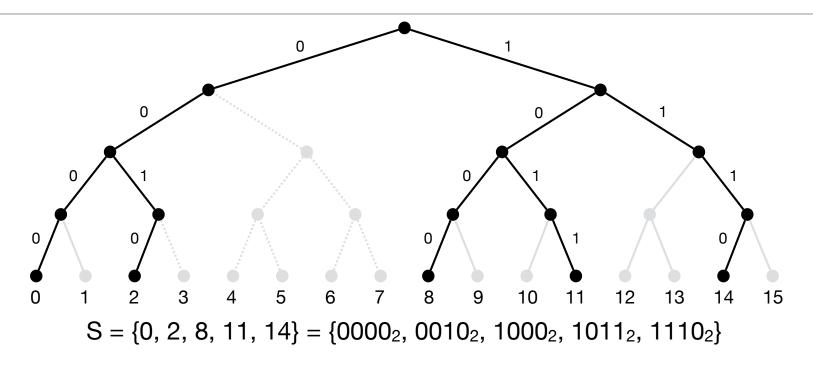
- Trie. Tree T of prefixes of binary representation of keys in S.
 - Depth of T is log u
 - Number of nodes in T is O(n log u).

Solution 1: Top-down Traversal



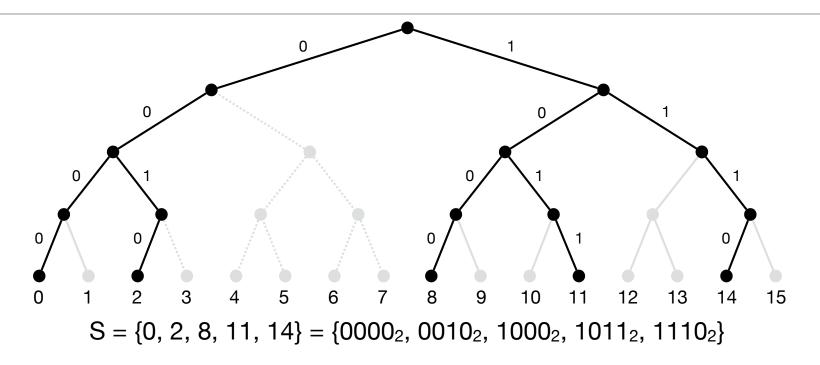
- Data structure.
 - T as binary tree with min and max for each node + keys ordered in a linked list.
- Predecessor(x): Top-down traversal to find the longest common prefix of x with T.
 - x branches of T to right \Rightarrow Predecessor(x) is max of sibling branch.
 - x branches of T to left ⇒ Successor(x) is min of sibling branch. Use linked list to get predecessor(x).
- Time. O(log u)
- Space. O(n log u)

Solution 2: X-Fast Trie



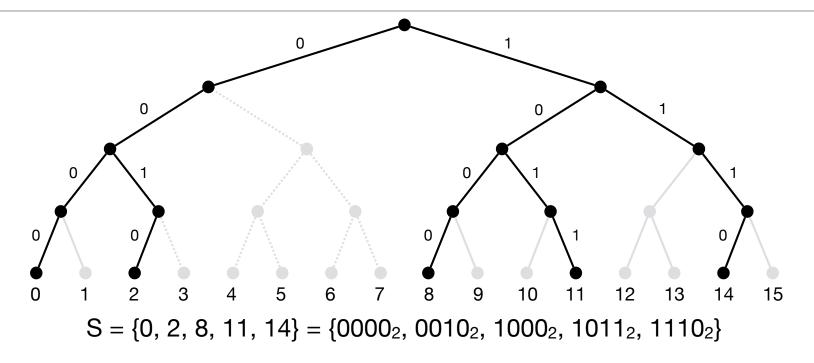
- Data structure.
 - For each level store a dictionary of prefixes of keys + solution 1.
 - Example. $d_1 = \{0,1\}, d_2 = \{00, 10, 11\}, d_3 = \{000, 001, 100, 101, 111\}, d_4 = S$
- Space. O(n log u)

Solution 2: X-Fast Trie



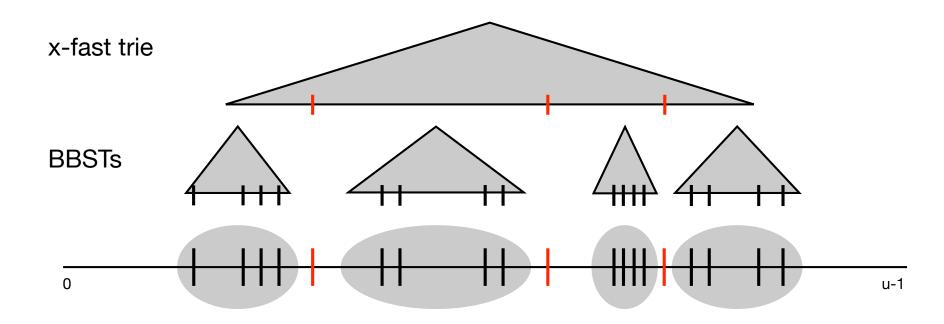
- Predecessor(x): Binary search over levels to find longest matching prefix with x.
- Example. Predecessor(9 = 1001₂):
 - 10_2 in d_2 exists \Rightarrow continue in bottom 1/2 of tree.
 - 100_2 in d_3 exists \Rightarrow continue in bottom 1/4 of tree.
 - 1001₂ in d₄ does not exist ⇒ 100₂ is longest prefix.
- Time. O(log log u)

Solution 2: X-Fast Trie



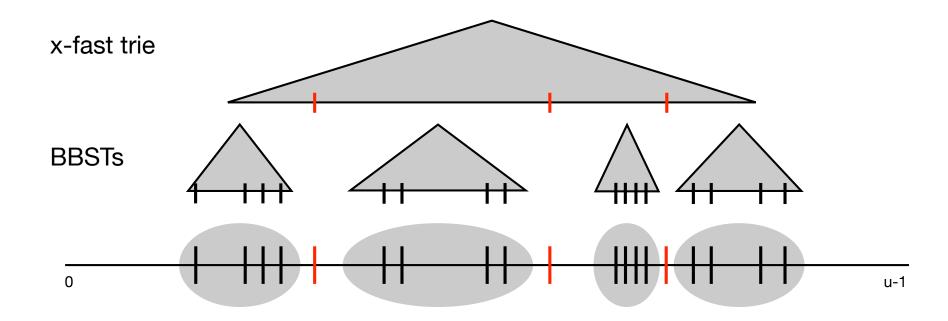
- Theorem. We can solve the static predecessor problem in
 - O(log log u) time
 - O(n log u) space.
- How do we get linear space?

Solution 3: Y-Fast Trie



- Bucketing.
 - Partition S into O(n / log u) groups of log u consecutive keys.
 - Compute S' = set of split keys between groups. |S'| = O(n/log u)
- Data structure. x-fast trie over S' + balanced binary search trees for each group.
- Space.
 - x-fast trie: $O(|S'| \log u) = O(n/\log u \cdot \log u) = O(n)$.
 - Balanced binary search trees: O(n).
 - \Rightarrow O(n) in total.

Solution 3: Y-Fast Trie



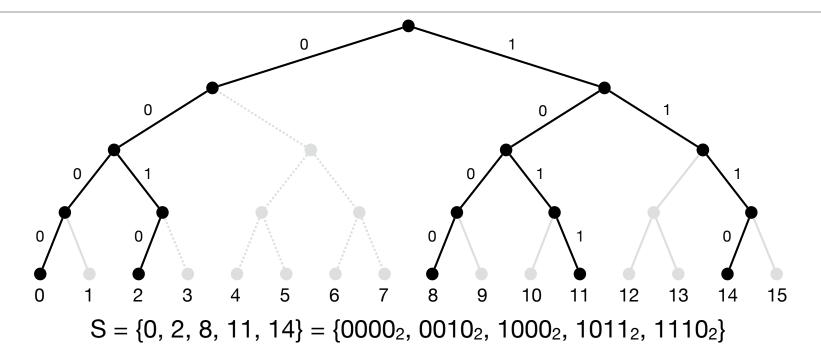
• Predecessor(x):

- Compute s = predecessor(x) in x-fast trie.
- Compute predecessor(x) in BBST to the left or right of s.

• Time.

- x-fast trie: O(log log u)
- balanced binary search tree: O(log (group size)) = O(log log u).
- \Rightarrow O(log log u) in total.

Solution 3: Y-Fast Trie



- Theorem. We can solve the static predecessor problem in
 - O(log log u) time
 - O(n) space.

Y-Fast Tries

- Theorem. We can solve the static predecessor problem in
 - O(n) space.
 - O(log log u) time.
- Theorem. We can solve the dynamic predecessor problem in
 - O(n) space
 - O(log log u) expected time for predecessor and updates.

From dynamic hashing

- Predecessor Problem
- van Emde Boas
- Tries