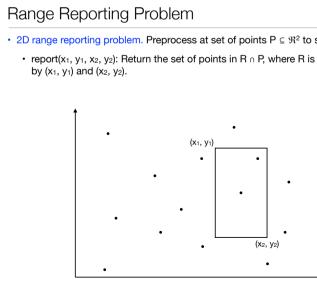
- Range reporting problem
- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees

Philip Bille

Range Reporting

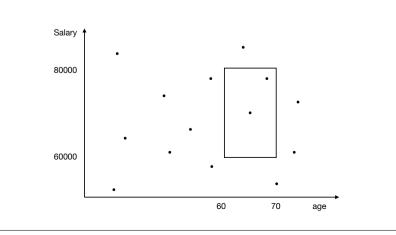
Range reporting problem

- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees



Applications

• Relational databases. SELECT all employees between 60 and 70 years old with a montly salary between 60000 and 80000 DKr



- 2D range reporting problem. Preprocess at set of points $P \subseteq \Re^2$ to support
 - report(x_1, y_1, x_2, y_2): Return the set of points in R \cap P, where R is rectangle given

- Range reporting problem
- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees

1D Range Reporting

1 3 8 15 17 23 25 26 27 30 46 51 52 65 66 70

- Sorted array. Store P in sorted order.
- Report(x_1, x_2): Binary search for predecessor of x_1 . Traverse array until > x_2 .
- Time. O(log n + occ)
- Space. O(n)
- Preprocessing. O(n log n)

1D Range Reporting

- 1D range reporting. Preprocess a set of n points $\mathsf{P}\subseteq\mathfrak{R}$ to support:
- report(x1, x2): Return the set of points in interval [x1, x2]
- Output sensitivity. Time should depend on the size of the output.
- Simplifying assumption. Only comparison-based techniques (e.g. no hashing or bittricks).
- Solutions?

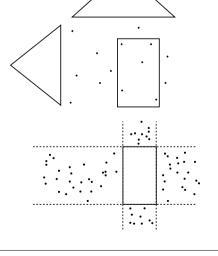
1D Range Reporting

- Theorem. We can solve the 1D range reporting problem in
 - O(n) space.
- O(log n + occ) time for queries.
- O(n log n) preprocessing time.
- Optimal in comparison-based model.

- Range reporting problem
- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees

Generalized 1D Range Reporting

- Data structure.
- 1D range tree Tx over x-coordinate
- 1D range tree T_y over y-coordinate
- Report(x₁, y₁, x₂, y₂):
- Compute all points R_x in x-range.
- Compute all points Ry in y-range.
- Return R_x ∩ R_y
- Time?



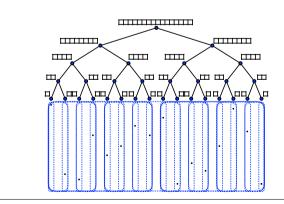
2D Range reporting

- Goal. 2D range reporting with
 - O(n log n) space and O(log n + occ) query time or
 - O(n) space and O($n^{1/2}$ + occ) query time.
- Solution in 4 steps.
 - Generalized 1D range reporting.
- 2D range trees.
- 2D range trees with bridges.
- kD trees.

2D Range Trees

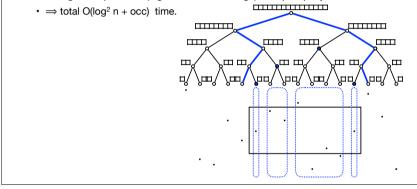
• Data structure.

- Perfectly balanced binary tree over x-coordinate.
- Each node v stores array of point below v sorted by y coordinate.
- Space. $O(n) + O(n \log n) = O(n \log n)$.
- Preprocessing time. O(n log n)



2D Range Trees

- Report(x1, y1, x2, y2): Find paths to predecessor of x1 and successor of x2.
 - At each off-path node do 1D query on y-range.
 - Return union of results.
- Time.
 - Predecessor + successor: O(log n)
 - + < 2log n 1D queries: O(log n + occ in subrange) time per query.



Range Reporting

- Range reporting problem
- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees

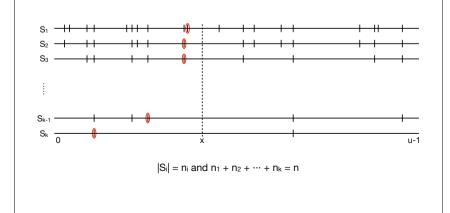
2D Range Reporting

- Theorem. We can solve the 2D range reporting problem in
 - O(n log n) space.
 - O(log² n + occ) time for queries.
 - O(n log n) preprocessing time.
- Challenge. Do we really need the $\log^2 n$ term for queries? Can we get (optimal) O(log n + occ) instead?

Predecessor in Nested Sets

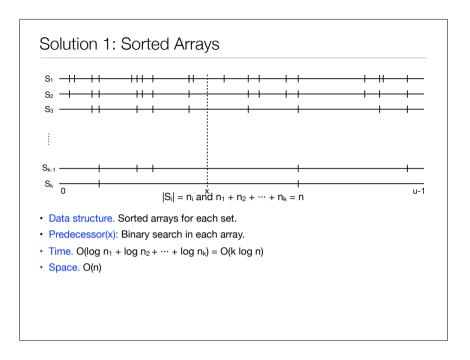
• Predecessor problem in nested sets. Let $S = \{S_1, S_2, ..., S_k\}$ be a family of sets from universe U such that $U \supseteq S_1 \supseteq S_2 \supseteq \cdots \supseteq S_k$.

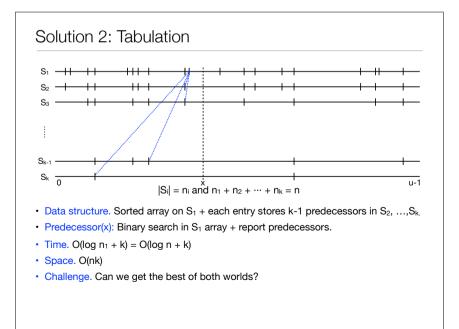
- predecessor(x): return the predecessor of x in each of $S_1, S_2, \, ..., \, S_k$.

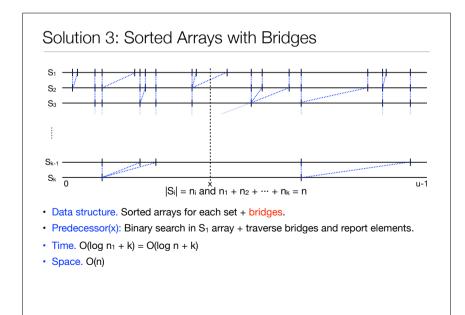


Predecessor in Nested Sets

- Goal. Predecessor in nested sets with O(n) space and O(log n + k) query time.
- · Solution in 3 steps.
 - Sorted arrays. Slow and linear space.
 - Tabulation. Fast but too much space.
 - · Sorted arrays with bridges. Fast and little space.





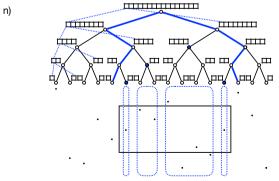


Predecessor in Nested Sets

- Theorem. We can solve the predecessor in nested sets problem in
 - O(n) space.
 - O(log n + k) query time.
 - O(n log n) preprocessing time.
- Extensions.
 - Predecessor \Rightarrow 1D range reporting.
 - More tricks \Rightarrow works for non-nested sets. Called fractional cascading.
- Challenge. How can we use predecessor in nested sets for 2D range reporting?

2D Range Reporting

- Data structure. 2D range tree with bridges.
 - Each point in array at v stores bridges to arrays in $v_{\rm l}$ and $v_{\rm r}.$
- Report(x1, y1, x2, y2): As 2D range tree query
- Binary search in root array + traverse bridges for remaining 1D queries.
- Time. O(log n + occ)
- Space. O(nlog n)
- Preprocessing. O(nlog n)



2D Range Reporting

- Goal. 2D range reporting in O(n log n) space and O(log n) time
- Idea. Consider node v with children v_l and v_r .
 - Arrays at v_l and v_r are subsets of array at v.
 - All searches in arrays during a query are on the same y-range.



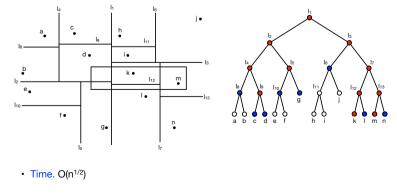
2D Range Reporting

- Theorem. We can solve the 2D range reporting problem in
 - O(n log n) space
- O(log n + occ) time for queries.
- O(n log n) preprocessing time.
- · What can we do with only linear space?

- Range reporting problem
- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees

kD Trees

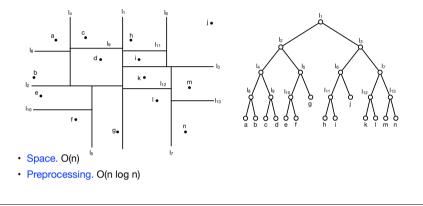
- Report(x₁, y₁, x₂, y₂): Traverse 2D tree starting at the root. At node v:
 - Case 1. v is a leaf: report the unique point in region(v) if contained in range.
 - Case 2. region(v) is disjoint from range: stop.
 - Case 3. region(v) is contained in range: report all points in region(v).
 - Case 4. region(v) intersects range, and v is not a leaf. Recurse left and right.



kD Trees

• The 2D tree (k = 2).

- · A balanced binary tree over point set P.
- Recursively partition P into rectangular regions containing (roughly) same number of points. Partition by alternating horizontal and vertical lines.
- Each node in tree stores region and line.



kD trees

- Theorem. We can solve the 2D range reporting problem in
 - O(n) space
 - O(n^{1/2} + occ) time
 - O(n log n) preprocessing

- Theorem. We can solve 2D range reporting in either
 - O(n log n) space and O(log n + occ) query time
 - O(n) space and O(n^{1/2} + occ) query time.
- Extensions.
 - More dimensions.
 - Inserting and deleting points.
 - Using word RAM techniques.
 - Other shapes (circles, triangles, etc.)

Range Reporting

- Range reporting problem
- 1D range reporting
 - Range trees
- 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees