Weekplan: Suffix Trees I

Philip Bille and Inge Li Gørtz

References and Reading

[1] Tries and Suffix Trees. Inge Li Gørtz.
[2] Algorithms on Strings, Trees, and Sequences, Chap. 5-9, D. Gusfield
We recommend reading [1] in detail. [2] provides an extensive list of applications of suffix trees.

Exercises

1 [w] Suffix Trees Draw the suffix tree T for the string mississippi\$. Write edge labels (substrings) and leaf labels (suffix number). Illustrate how a search for "issi"works.

2 [w] Substring Counting Let $S=s_{0} s_{1} \cdots s_{n-1}$ be a string of length n over an alphabet Σ. We are interested in a data structure for S that supports the following query.

- count (P) : return the number of occurrences of P in S.

Give a data structure that supports count (P) queries efficiently.

3 Number of nodes in a compact trie Let T be a tree where every internal node has a least 2 children. Let ℓ be the number of leaves in T and let i be the number of internal nodes. Use induction to prove that $i \leq \ell-1$. Give an example showing that this is a tight bound.

4 Repeats Solve the following exercises. Assume you have an efficient black-box algorithm for computing the suffix tree of a string.
4.1 A repeat in a string S is a substring R that occurs at least twice in S. Show how to efficiently compute the length of a longest substring of S that is a repeat.
4.2 Given a string S of length n and an integer k, show how to efficiently find the smallest substring of S occurring exactly k times. Analyze the time and space consumption of your algorithm.

5 Longest Common Extensions Let S be a string of length n over alphabet Σ. The longest common extension problem is to preprocess S into data structure to support queries of the following form:

- LCE (i, j) : Return the length of the longest common prefix of $S[i, n]$ and $S[j, n]$.

6 Restricted Suffix Search Let S be a string of length n over alphabet Σ. Give an efficient data structure for S that supports the following query:

- rsearch (P, i, j) : report the starting positions of occurrences of string P in $S[i, j]$.

7 DNA contamination [2] Various laboratory processes used to isolate, purity, clone, copy, maintain, probe, or sequence a DNA string can course unwanted DNA to become inserted into the string of interest or mixed together with a collection of strings. Often, the DNA sequences from many of the possible contaminants are known. This motivates the following computational problem:

Given a string S_{1} (the newly isolated and sequenced string of DNA) and a string S_{2} (the combined sources of possible contamination), find all substrings of S_{2} that occur in S_{1} and that are longer than some given length ℓ. These substrings are candidates for unwanted pieces of S_{2} that have contaminated the desired DNA string. Give an efficient algorithm to solve the problem.

8 Lexicographically smallest shift In chemical databases for circular molecules, each molecule is represented by a circular string of chemical characters. To allow faster lookup and comparisons of molecules, one wants to store each circular string by a canonical linear string. A natural choice for a canonical linear strings the one that is lexicographically smallest. That gives the following computational problem.

Assume we are given a string $T=x_{1} \ldots x_{n}$ of length n. A shift of T by $s, 0 \leq s<n$, is the string $T^{s}=$ $x_{s+1} x_{s+2} \ldots x_{n} x_{1} x_{2} \ldots x_{s}$. In this problem we want to find the lexicographically smallest shift, i.e. the shift s where T^{s} is lexicographically smallest among T^{0}, \ldots, T^{n-1}. Eg. $T^{2}=T^{7}=\mathrm{a} a \mathrm{baba} \mathrm{abab}$ are the lexicographically smallest shifts of the string

$$
T=\mathrm{ab} \mathrm{a} \mathrm{ab} \mathrm{ab} \mathrm{a} \mathrm{ab}
$$

8.1 State all s where T^{s} is a lexicographically smallest shift of the string

$$
T=\mathrm{bcabaabcabaabcabaa}
$$

8.2 Describe an algorithm that given a string T of length n over an alphabet of size $O(1)$ computes all s where T^{s} is a lexicographically smallest shift of T. State the algorithms running time.

