Lecture We will talk about amortised analysis of splay trees. You should read

• Splay trees in section 16.5-16.6 in the notes by Jeff Ericsson.

Supplementary material

• Self-adjusting binary top-trees by Sleator and Tarjan.

Exercises

1 Splay trees

- 1.1 Show the splay tree that results from inserting the keys 41, 38, 31, 12, 19, 8 in this order into an initially empty tree.
- 1.2 Show how the tree looks after deleting 31.

2 Play trees Professor Bille suggests a simpler version of Splay Trees that he calls Play trees. Play Trees are similar to Splay Trees but uses only single rotations when splaying.

- **2.1** What is the amortized cost of splay(x) if we only use single rotations? Analyze it with the same potential function as we used for Splay Trees.
- **2.2** What is the total (actual) cost of first n inserting elements with keys $1, 2, 3, \ldots, n$ in that order in a Play Tree and then searching for $1, 2, 3, \ldots, n$ (in that order)?
- **2.3** Professor Bille claims that the amortized cost of the operations insert, search and delete in Play trees is $O(\log n)$. "You just need to use a more sophisticated potential function" he says. Could he be correct?

3 Splay trees Let Φ be the potential function used to analyze splay trees. I.e. $\Phi = \sum_{v \in T} \operatorname{rank}(v)$. Prove that the potential of a complete binary tree is O(n) and that the potential of a rooted path is $O(n \log n)$.

For more exercises on amortised algorithms, see exercises from course 02210 year 2021.