Dynamic Graphs: Dynamic edge orientation

Eva Rotenberg

Dynamic.

Algorithms:
Algorithmic problem \rightarrow Algorithm \rightarrow Solution.
Dynamic algorithms:
Update to problem \rightarrow Dynamic algorithm \rightarrow Update to solution.

- Add/delete element in datastructure
- Add/delete edge in graph, $\quad \leftarrow$ Note, $O(\log n)$ bits.
- Add/delete/change character in string, or point in curve, ...

Motivation:

- Useful:
- Efficiently maintain information in large, changing datasets,
- Applications in (static) algorithms, sabotage logic, other models ...
- Revisit fundamental problems and properties
- graph connectivity, planarity, distance, min-cut, colouring, clustering, ...

Toolbox:

- Maintain/update some data structure,
- Amortised algorithms

Last time: Splay trees

Insert 1, 2, 3, 4, ..., 10. Splay 1.
Be lazy

Balance things out when needed.
Analysis: Potential function.
Benefit: amortisation allows us to approach the problem from a new angle, apply different ideas.

Dynamic bounded out-degree orientations

Sparse graphs

A graph is sparse if it has few edges per vertex.
 A measure of sparsity is arboricity, the treeishness of the graph.

- Arboricity of G is $\leq c$, I
- Union of c forests: $G=F_{1} \cup F_{2} \cup \ldots \cup F_{c}$ §
- Any subgraph J on n_{J} vertices has $\leq c\left(n_{\jmath}-1\right)$ edges.

Note: Given $G=F_{1} \cup F_{2} \cup \ldots \cup F_{c}$ possible to orient F_{i} towards root. Thus, outdegree $(v) \leq c$.

Problem: Dynamic graph whose arboricity never exceeds c. Orient edges, so that outdegree (v) is $O(c)$.
Motivation: $\operatorname{adjacency}(u, v)$ in $O(c)$ time. (I.e: are u and v neighbours?)

Dynamic bounded out-degree orientations

Setup:

Arboricity $\leq c$
$G=F_{1} \cup F_{2} \cup \ldots \cup F_{c}$
The problem:
Dynamic graph, arboricity always $\leq c$.
out-degree $(v) \leq \Delta=6 \cdot c$?
The algorithm (amortised)
Deletion? Easy.
Insertion, safe case? Easy.
Insertion, overflow? Flip all edges.
This may cause some neighbours to overflow (ie. more than Δ out-neighbours.)
recursively repeat on the overflowing vertices, until the stack of overflowing vertices is empty.

Correctness? If terminates, then correct Δ out-orientation Running time? Amortised analysis.

Dynamic bounded out-degree orientations - the omniscient algorithm

Algorithm: 6α-overflow \Rightarrow flip-in all edges, keep flipping until no overflow.
Analysis: Consider maintaining a 2α-orientation.
If out-degree $(u) \geq 2 \alpha$, there is a path of length $\log n$ to some v of out-degree $<2 \alpha$.
Why? (1) such a vertex must exist (arb. $\leq \alpha$).
(2) Consider V_{i}; i 'th out-neighbourhood of u.

If one of them contains such a v - done.
Otherwise, $\left|V_{i}>2^{i}\right|$. Why? Induction.
Assume $V_{j}>2^{j}$, and we are not done.
Consider the 2α out-edges of $V_{j}: 2 \alpha \cdot 2^{j}$ edges. Arboricity α : those $2 \alpha \cdot 2^{j}$ edges must take up $2 \alpha \cdot 2^{j} / \alpha$ vertices. I.e. $2^{j+1} . \leftarrow V_{j+1}$. :)
So after $\log n$ steps, $V_{\log n}=G$.
Conclusion: There is an omniscient 2α-orientation algorithm that performs only $\log n$ flips per dynamic operation.

Dynamic bounded out-degree orientations - putting it together

Algorithm: When overflow \Rightarrow flip-in all edges, keep flipping until no overflow.
Overflow: $>6 c$ out-edges on a vertex.
Recall: omniscient $2 c$-algorithm, $\log n$ flips.
Say an edge is good if it agrees with the omniscient algorithm.
What happens when 'overflow' \Rightarrow flip-all?
At least $4 c$ bad edges become good.
At most $2 c$ good edges become bad.
Potential $=$ number of bad edges

Greedy algorithm does amortized $O(\log n)$ flips
per edge update.
Take-home message:
Amortised analysis is a potent tool for analysing very simple algorithmic ideas.
Recourse analysis can be an important tool for amortised analysis of greedy algorithms.
(Exercises.)

Lower bound

Assume c is a constant, and is an upper bound on the arboricity of the dynamic graph.
Then if we force out-degree $\leq c$, we may have to perform $\Omega(n)$ edge-reorientations per insert/delete.
Idea: Think of a path. If we cut and link, we may force $\Omega(n)$ reorientations. For larger c, the construction is a union of paths. Still, a cut and link in one of these paths is what shows the lower bound.
(For details, see Thm. 4.)

