
Dynamic Graphs: Dynamic edge orientation

Eva Rotenberg

1 / 9

Dynamic.

Algorithms:

Algorithmic problem → Algorithm → Solution.

Dynamic algorithms:

Update to problem → Dynamic algorithm → Update to solution.

▶ Add/delete element in datastructure

▶ Add/delete edge in graph, ← Note, O(log n) bits.

▶ Add/delete/change character in string, or point in curve, ...

Motivation:
▶ Useful:

▶ Efficiently maintain information in large, changing datasets,
▶ Applications in (static) algorithms, sabotage logic, other models . . .

▶ Revisit fundamental problems and properties
▶ graph connectivity, planarity, distance, min-cut, colouring, clustering, ...

Toolbox:

▶ Maintain/update some data structure,

▶ Amortised algorithms

2 / 9

Last time: Splay trees

1

2

3

4

5

6

7

8

9

10

4

2

1 3

8

6 10

5 7 9 12

11 13

Insert 1, 2, 3, 4, . . ., 10. Splay 1.
Be lazy
Balance things out when needed.

not eager.

Analysis: Potential function.
Benefit: amortisation allows us to approach the problem from a new angle,
apply different ideas.

3 / 9

Dynamic bounded out-degree orientations

4 / 9

Sparse graphs

A graph is sparse if it has few edges per vertex.
A measure of sparsity is arboricity, the
treeishness of the graph.

▶ Arboricity of G is ≤ c,
⇕

▶ Union of c forests: G = F1 ∪ F2 ∪ . . . ∪ Fc

⇕
▶ Any subgraph J on nJ vertices has
≤ c(nJ − 1) edges.

Note: Given G = F1 ∪ F2 ∪ . . . ∪ Fc possible to orient Fi towards root. Thus,
outdegree(v) ≤ c.

Problem: Dynamic graph whose arboricity never exceeds c. Orient edges, so
that outdegree(v) is O(c).

Motivation: adjacency(u, v) in O(c) time. (I.e: are u and v neighbours?)

5 / 9

Dynamic bounded out-degree orientations

Setup:
Arboricity ≤ c
G = F1 ∪ F2 ∪ . . . ∪ Fc

The problem:
Dynamic graph, arboricity always ≤ c.
out-degree(v) ≤ ∆ = 6 · c?

The algorithm (amortised)
Deletion? Easy.
Insertion, safe case? Easy.
Insertion, overflow? Flip all edges.
This may cause some neighbours to overflow
(ie. more than ∆ out-neighbours.)
recursively repeat on the overflowing vertices,
until the stack of overflowing vertices is empty.

Correctness? If terminates, then correct ∆ out-orientation
Running time? Amortised analysis.

6 / 9

Dynamic bounded out-degree orientations – the omniscient algorithm

Algorithm: 6α-overflow ⇒ flip-in all edges,
keep flipping until no overflow.
Analysis: Consider maintaining a
2α-orientation.
If out-degree(u) ≥ 2α, there is a path of length
log n to some v of out-degree < 2α.
Why? (1) such a vertex must exist (arb. ≤ α).
(2) Consider Vi ; i ’th out-neighbourhood of u.
If one of them contains such a v – done.
Otherwise, |Vi > 2i |. Why? Induction.
Assume Vj > 2j , and we are not done.
Consider the 2α out-edges of Vj : 2α · 2j edges.
Arboricity α: those 2α · 2j edges must take up
2α · 2j/α vertices. I.e. 2j+1. ← Vj+1. :)
So after log n steps, Vlog n = G .

Conclusion: There is an omniscient
2α-orientation algorithm that performs only
log n flips per dynamic operation.

...

7 / 9

Dynamic bounded out-degree orientations – putting it together

Algorithm: When overflow ⇒ flip-in all edges,
keep flipping until no overflow.
Overflow: > 6c out-edges on a vertex.
Recall: omniscient 2c-algorithm, log n flips.
Say an edge is good if it agrees with the
omniscient algorithm.
What happens when ’overflow’⇒ flip-all?
At least 4c bad edges become good.
At most 2c good edges become bad.
Potential = number of bad edges
Greedy algorithm does amortized O(log n) flips
per edge update.

good

bad

Take-home message:
Amortised analysis is a potent tool for analysing very simple algorithmic ideas.
Recourse analysis can be an important tool for amortised analysis of greedy
algorithms.
(Exercises.)

8 / 9

Lower bound

Assume c is a constant, and is an upper bound on the arboricity of the
dynamic graph.
Then if we force out-degree ≤ c, we may have to perform Ω(n)
edge-reorientations per insert/delete.
Idea: Think of a path. If we cut and link, we may force Ω(n) reorientations.
For larger c, the construction is a union of paths. Still, a cut and link in one of
these paths is what shows the lower bound.
(For details, see Thm. 4.)

9 / 9

	Splay trees
	Dynamic out-orientations

