Dynamic Graphs: Dynamic edge orientation

Eva Rotenberg

Dynamic.

Algorithms:

Algorithmic problem \rightarrow Algorithm \rightarrow Solution.

Dynamic algorithms:

Update to problem \rightarrow Dynamic algorithm \rightarrow Update to solution.

- Add/delete element in datastructure
- ► Add/delete edge in graph, \leftarrow Note, $O(\log n)$ bits.
- Add/delete/change character in string, or point in curve, ...

Motivation:

- Useful:
 - Efficiently maintain information in large, changing datasets,
 - Applications in (static) algorithms, sabotage logic, other models ...
- Revisit fundamental problems and properties
 - graph connectivity, planarity, distance, min-cut, colouring, clustering, ...

Toolbox:

- Maintain/update some data structure,
- Amortised algorithms

Insert 1, 2, 3, 4, ..., 10. Splay 1. Be lazy

not eager.

Balance things out when needed.

Analysis: Potential function.

Benefit: amortisation allows us to approach the problem from a new angle, apply different ideas.

Dynamic bounded out-degree orientations

Sparse graphs

A graph is sparse if it has few edges per vertex. A measure of sparsity is arboricity, the treeishness of the graph.

- Arboricity of G is $\leq c$,
- Union of *c* forests: $G = F_1 \cup F_2 \cup \ldots \cup F_c$
- Any subgraph J on n_J vertices has $\leq c(n_J 1)$ edges.

Note: Given $G = F_1 \cup F_2 \cup \ldots \cup F_c$ possible to orient F_i towards root. Thus, outdegree $(v) \leq c$.

Problem: Dynamic graph whose arboricity never exceeds c. Orient edges, so that outdegree(v) is O(c).

Motivation: adjacency(u, v) in O(c) time. (I.e. are u and v neighbours?)

Dynamic bounded out-degree orientations

Setup: Arboricity $\leq c$ $G = F_1 \cup F_2 \cup \ldots \cup F_c$

The problem: Dynamic graph, arboricity always $\leq c$. out-degree(v) $\leq \Delta = 6 \cdot c$?

The algorithm (amortised) Deletion? Easy. Insertion, safe case? Easy. Insertion, overflow? Flip all edges. This may cause some neighbours to overflow (ie. more than Δ out-neighbours.) recursively repeat on the overflowing vertices, until the stack of overflowing vertices is empty.

Correctness? If terminates, then correct Δ out-orientation Running time? Amortised analysis.

Dynamic bounded out-degree orientations - the omniscient algorithm

Algorithm: 6α -overflow \Rightarrow flip-in all edges. keep flipping until no overflow. Analysis: Consider maintaining a 2α -orientation If out-degree(u) > 2 α , there is a path of length log *n* to some *v* of out-degree $< 2\alpha$. Why? (1) such a vertex must exist (arb. $< \alpha$). (2) Consider V_i ; *i*'th out-neighbourhood of *u*. If one of them contains such a v – done. Otherwise, $|V_i > 2^i|$. Why? Induction. Assume $V_i > 2^j$, and we are not done. Consider the 2α out-edges of V_i : $2\alpha \cdot 2^j$ edges. Arboricity α : those $2\alpha \cdot 2^{j}$ edges must take up $2\alpha \cdot 2^{j}/\alpha$ vertices. I.e. $2^{j+1} \leftarrow V_{i+1}$. :) So after log *n* steps, $V_{\log n} = G$.

Conclusion: There is an omniscient 2α -orientation algorithm that performs only log *n* flips per dynamic operation.

Dynamic bounded out-degree orientations - putting it together

Algorithm: When overflow \Rightarrow flip-in all edges,

keep flipping until no overflow.

Overflow: > 6c out-edges on a vertex. Recall: omniscient 2c-algorithm, log *n* flips. Say an edge is *good* if it agrees with the omniscient algorithm.

What happens when 'overflow' \Rightarrow flip-all?

At least 4c bad edges become good.

At most 2c good edges become bad.

Potential = number of bad edges

Greedy algorithm does amortized $O(\log n)$ flips per edge update.

bad good

Take-home message:

Amortised analysis is a potent tool for analysing very simple algorithmic ideas. Recourse analysis can be an important tool for amortised analysis of greedy algorithms.

(Exercises.)

Lower bound

Assume c is a constant, and is an upper bound on the arboricity of the dynamic graph.

Then if we force out-degree $\leq c$, we may have to perform $\Omega(n)$ edge-reorientations per insert/delete.

Idea: Think of a path. If we cut and link, we may force $\Omega(n)$ reorientations.

For larger c, the construction is a union of paths. Still, a cut and link in one of these paths is what shows the lower bound.

(For details, see Thm. 4.)