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Splay Trees

• Self-adjusting BST (Sleator-Tarjan 1983).


• Most frequently accessed nodes are close to the root.


• Tree reorganizes itself after each operation.


• After access to a node it is moved to the root by splay operation. 


• Worst case time for insertion, deletion and search is O(n). Amortised time 
per operation O(log n).


• Operations. Search, predecessor, sucessor, max, min, insert, delete, join. 



• Splay(x): do following rotations until x is the root. Let y be the parent of x.


• right (or left): if x has no grandparent.
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• Splay(x): do following rotations until x is the root. Let p(x) be the parent of x.


• right (or left): if x has no grandparent.


• zig-zag (or zag-zig): if one of x,p(x) is a left child and the other is a right 
child.
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• Splay(x): do following rotations until x is the root. Let y be the parent of x.


• right (or left): if x has no grandparent.


• zig-zag (or zag-zig): if one of x,y is a left child and the other is a right child.


• roller-coaster: if x and p(x) are either both left children or both right 
children.
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• Example.  Splay(1)
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• Example.  Splay(3)
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• Example.  Splay(3)
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• Example.  Splay(3)
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• Example.  Splay(3)
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Splay Trees

• Search(x). Find node containing key x (or predecessor/successor) using usual 
search algorithm. Splay found node.


• Insert(x). Insert node containing key x using algorithm for binary search trees. 
Splay inserted node.


• Delete(x). Find node x, splay it and delete it. Tree now divided in two subtrees. 
Find node with largest key in left subtree, splay it and join it to the right 
subtree by making it the new root.    
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Deletion in Splay Trees

• Delete 6.
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Deletion in Splay Trees

• Delete 6.
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• Delete 6.
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Deletion in Splay Trees

• Delete 6.
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Analysis of splay trees

• Amortized cost of a search, insert, or delete operation is O(log n).


• All costs bounded by splay.



• Rank of a node. 


• size(v) = #nodes in subtree of v


•   


• Potential function.


• Rotation Lemma. The amortized cost of a single rotation at any node v is at 
most 1 + 3 rank’(v) - 3 rank(v), and the amortized cost of a double rotation at 
any node v is at most 3 rank’(v) - 3 rank(v).


• Splay Lemma. The amortized cost of a splay(v) is at most 1 + 3rank’(v) - 3 
rank(v). 
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Splay Lemma Proof

• Rotation Lemma. The amortized cost of a single rotation at any node v is at 
most 1 + 3 rank’(v) - 3 rank(v), and the amortized cost of a double rotation at 
any node v is at most 3 rank’(v) - 3 rank(v).


• Splay Lemma. The amortized cost of a splay(v) is at most 1 + 3rank’(v) - 3 
rank(v). 


• Proof. 


• Assume we have k rotations. 


• Only last one can be a single rotation.





where  is the rank of v after the th rotation. 

k

∑
i=0

̂ci ≤
k−1

∑
i=1

(ri(v) − ri−1(v)) + (1 + rk(v) − rk−1(v)) = 1 + rk(v) − r0(v)m = O(lg n)

ri(v) i



Rotation Lemma

• Proof of rotation lemma: Single rotation. 


• Actual cost: 1


• Change in potential: 


• Only x and y can change rank.


• Change in potential at most r’(x) - r(x).


• Amortized cost ≤ 1 + r’(x) - r(x) ≤ 1 + 3r’(x) - 3r(x).
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Rotation Lemma

• Proof of rotation lemma: zig-zag. 


• Actual cost: 2


• Change in potential: 


• Only x, w and z can change rank.


• Change in potential at most 2r’(x) - 2r(x) - 2.


• Amortized cost: ≤ 2 + 2r’(x) - 2r(x) - 2 ≤ 2r’(x) - 2r(x) ≤ 3r’(x) - 3r(x).
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