External Memory I

- Access Path Traversal
- Searching with Fast Updates

External Memory |l

- Access Path Traversal

Philip Bille
Access Path Traversal Access Path Traversal
- Access Path Traversal. start -+ Solution 1. Direct traversal. start
+ Data structure D stores a dynamic set of items. é - search(x): traverse path and lookup x in D. (L)
- Can only access D by following an access path of length P = B. - insert(x): traverse path and insert x into D.
- We want to support the following operations. - delete(x) traverse path and delete x from D.
- search(x): lookup x in D. O - 1/Os. O(P) O
+ insert(x): insert x into D.
- delete(x): remove x from D. P-4 P-4
+ Twist.
- Each operation must start at the top of the access path.
+ How many I/Os for each operation? Ignore 1/0Os on D. Q@ Q@
D




Access Path Traversal

-+ Solution 2. Buffered updates.
- Add buffers of size ©(B) to each edge stored in O(1) blocks.

Access Path Traversal

-+ search(x).
-+ Traverse path and check buffers for delayed updates on x

start

O . O
- Buffers store delayed updates to D. A delayed update is a (remove duplicate delayed updates on x).
message to insert or delete an item. CEEN - Return x if we find a delayed insert on x on the path. CEEE
O - Otherwise, search x in D and return the result. O
EEE ] * 1/0s. OP) EBE )
O P=4 O P=4
EE_] EE_]
O O
(=S| (B E =]
Access Path Traversal Access Path Traversal
- insert(x) or delete(x). start - insert(x) or delete(x). start
- Insert delayed insert/delete into the first buffer on the path. If - Insert delayed insert/delete into the first buffer on the path. If
full, flush and recurse on the next node in the path. full, flush and recurse on the next node in the path.
- If we flush the last buffer on the path, insert/delete items in D. - If we flush the last buffer on the path, insert/delete items in D.
+ 1/O intuition. -+ 1/0Os. Amortized analysis via accounting method. Assign extra
- Flush moves ©(B) message together in O(1) I/Os. credits to items to pay for future operations. Credits must always
+ A message moves at most P times. p_4 be non-negative. p_4

- = O(P/B + 1) = O(P/B) amortized 1/Os.

- Amortized cost is < credits + actual cost of operation.

-+ Assign cP/B credits to each delayed update for appropriate
constant c>1.

- When a delayed update enters a buffer, we leave ©(1/B) of the
credits with the buffer.

- When we flush a buffer, we use the O(B - 1/B) = ©(1) credits to
pay for the flush.

- = We can pay for all flushes.

- = Amortized I/Os is credits + actual cost = O(P/B + 1) = O(P/B).

Fofrofofo




Searching

-+ Searching. Maintainaset S ¢ U = {0, ..., u-1} supporting
- search(x): determineif x € S
- predecessor(x): return largest element in S < x.
+ successor(x): return smallest element in S > x.
- insert(x): set S =S u {x}
- delete(x): setS=S - {x}

External Memory I

- Searching with Fast Updates

VA RN

predecessor(x) X successor(x)

Searching B-tree

+ Applications.

+ Relational data bases.
- File systems.

+ B-tree of order 6 = ©(B) with N keys.
» Keys in leaves. Routing elements in internal nodes.
» Degree between 6/2 and 6.
» Root degree between 2 and 6.
+ Leaves store between 6/2 and & keys.
+ All leaves have the same depth.

» Height. B(logs (N/B)) = ©(logs N)

+ Search and update. O(logs N) I/Os.




B*-tree

+ ldea.
- Speed up updates by buffering them at each node along the path to a leaf.
- Move many updates together in each I/0O.
+ Search (almost) as before.
- €¢e(0,1]is a parameter.
+ Solution in 2 steps.
- Focus on y/B-tree (¢ = 1/2).
- Searching in O(logs N) I/Os.
- Updates in O((logs N)/1/B) amortized.
- Generalize to any .

\/B-tree

. \/E-tree with N keys.

« B-tree of degree 6(\/5) with buffers of size e(\/E) at each edge.
« Buffer stores delayed updates in subtree.
+ Nodes and child buffers stored together in O(1) blocks.

+ Height. ©(log s N) = ©(logs N)

\/B-tree

+ search(x)

+ Find leaf using routing elements. Check buffers along path for delayed updates on x (remove
duplicate delayed updates on x).

+ Return x if we find delayed insert on path.
+ Otherwise, return "yes" if x in leaf or "no" if not.
+ 1/Os. O(loge N).

\/B-tree

« insert(x) or delete(x)

- Insert delayed insert/delete into first buffer on path. If full, flush and recurse on next node in
path. If we fill leaf, rebalance tree as B-tree.

+ 1/O intuition.
« A flush moves 1/ B messages together in O(1) I/Os.
+ A message moves at most O(logs N) times.

« = O((logs N)/\/E) amortized 1/Os.




\/B-tree

« insert(x) or delete(x)

- Insert delayed insert/delete into first buffer on path. If full, flush and recurse on next node in
path. If we fill leaf, rebalance tree as B-tree.

* 1/Os.
+ Assign (clogs N)/\/E credits to each update for appropriate constant ¢ > 1.
+ Put 0(1/\/5) credits each node on the path to pay for flush and rebalancing.
+ When we flush a buffer, we use O(\/E . 1/\/§) = 0(1) credits.
+ = Amortized cost is = O((logs N)/\/g)

Bt-tree

EEEE BEE ] | ] @

B1—E

+ B®-tree with N keys.
« B-tree of degree ©(B®) with buffers of size ©(B' %) at each edge.

logg N
. Searching. O (g—B> 1/Os.
€

logg N
. Updates. O 2% I/Os.
eB1-

B*-tree

Search Update

B-tree O(logg N) O(loggN)

logg N
\/B-tree O(logg N) o) <%>
B

logg N logg N
B¢-tree @) 28 7 0 £s -
£ eB1-¢

External Memory |

+ Access Path Traversal
- Searching with Fast Updates




