Hashing

+ Hashing Recap
- Dictionaries

- Perfect Hashing
- String Hashing

Philip Bille

Hashing

+ Hashing Recap

Hashing Recap

+ Hash function idea.

- Want a random, crazy, chaotic function that maps a large universe to a small range. The
function should distribute the items “evenly.”

+ Hash function.
- Let H be a family of functions mapping a universe U to {0, ..., m-1}.
+ A hash function h is a function chosen randomly from H.
- Typically m « |U].

- Goals.
- Low collision probability: for any xzy, we want Pr(h(x) = h(y)) to be small.
- Fast evaluation.
+ Small space.

Hashing Recap

+ Universal hashing.

-+ Let H be a family of functions mapping a universe U to {0, ..., m-1}.
+ His universal if for any x # y in U and h chosen uniformly at random from H

1
Pr(h(x) = h(y)) < —.
m

- Examples.

+ Multiply-mod-prime.

- h,py(x)=ax+b mod pwithH={h,, |a€ {1,...,p—-1},be {0,...,p—1}}.
+ Multiply-shift.

- h,(x) = (ax mod 2¥) 3> (k — ) with H = {h, | ais an odd integer in {1,...,25 = 1}}




Hashing

Dictionaries

- Dictionaries

- Dictionary problem. Maintain a dynamic set of integers S ¢ U subject to following operations

- LOOKUP(x): return true if x € S and false otherwise.

+ INSERT(X): set S =S u {x}
+ DELETE(x): set S = S\ {x}

- Satellite information. Information associated with each integer.

- Applications. Lots of practical applications and key component in other algorithms and data

structures.

+ Challenge. Can we get a compact data structure with fast operations.

Chained Hashing

Chained Hashing

+ Chained hashing.

- Choose universal hash function h from U to {0, ..,m-1}, where m = O(n).

+ Initialize an array A[O, ..., m-1].

- A[i] stores a linked list containing the keys in S whose hash value is i.

© ® N O A WN 4O

+ Space. O(m + n) = O(n)

—lal—{1]

| —1a]
| —1s4]

—{es}—{16]—[o6]

+ Operations.

« LOOKUP(x): Compute h(x). Scan A[h(x)]. Return true if x is in list and false otherwise.
+ INSERT(x): Compute h(x). Scan A[h(x)]. Add x to the front of list if it is not there already.
+ DELETE(x): Compute h(x). Scan A[h(x)]. Remove x from list if it is there.

- Time. O(1 + |ATh(X)]))

© ® N O ;A WN 2O

—lal—{1]

| —[a]
| —1s4]

—{es}—[16]—[o6]




Chained Hashing

- What is the expected length of A[h(x)]?

_ 1 ifh(y) = h(x)
Cbethy= {o i h(y) # h(x)

1
- E(1AMGI) =E| D1, =ZE<IY>=1+ZPr(h(x)=h(y))s1+(n—1)-;=0(1)

yes yes yeS\{x}

- Theorem. We can solve the dictionary problem in O(n) space and constant expected time per
operation.

Hashing

+ Perfect Hashing

Static Dictionaries and Perfect Hashing

- Static dictionary problem. Given a set S ¢ U = {0,..,u-1} of size n for preprocessing support the
following operation
+ LOOKUP(x): return true if x € S and false otherwise.

-+ Challenge. Can we do better than (dynamic) dictionary solution?

-+ Perfect Hashing. A perfect hash function for S is a collision-free hash function on S.
- Perfect hash function in O(n) space and O(1) evaluation time = solution with O(n) space and
O(1) worst-case lookup time.
- Do perfect hash functions with O(n) space and O(1) evaluation time exist for any set S?

Static Dictionaries and Perfect Hashing

- Goal. Perfect hashing in linear space and constant worst-case time.
-+ Solution in 3 steps.

-+ Solution 1. Collision-free but with too much space.

-+ Solution 2. Many collisions but linear space.

- Solution 3: FKS scheme [Fredman, Komlds, Szemerédi 1984]. Two-level solution. Combines
solution 1 and 2.




Solution 1: Collision-Free, Quadratic Space

Solution 1: Collision-Free, Quadratic Space

-+ Data structure.
+ Array A of size n2.
- Universal hash function mapping U to {0, ..., n2-1}. Choose randomly during preprocessing
until collision-free on S. Store each x € S at position A[h(x)].

+ Space. O(n?).

* Queries.

+ LOOKUP(X): Check A[h(x)].
- Time. O(1).
+ Preprocessing time?

Solution 1: Collision-Free, Quadratic Space

Solution 2: Many Collisions, Linear Space.

+ Analysis.

_f1 ith(y) = h(x)
' Le””_{o h(y) # h(x)

-+ Let C = total number of collisions on S.

DB =E| X Ly |= D E(Ly) = X Pr(ho =h(y) <

X,YES X#£Y X,YES XY X,YES X£Y

n1<1
2)n2 2

- = With probability 1/2 we get perfect hashing function. If not perfect try again.
- = Expected number of trials before we get a perfect hash function is O(1).

- Theorem. We can solve the static dictionary problem in

+ O(n?) space and O(n2) expected time preprocessing time.

- O(1) worst-case query time.

- As solution 1 but with an array of length n. What is the expected number of collisions?

EO=E| Y 1,|=YE (Ix’y> =Y Pr(h() = h(y)) < <2> 1; <%

X,YES X#Y X,YES, XF#Y X,YES X#Y




Solution 3: FKS-Scheme.

Solution 3: FKS-Scheme.

?:~
W
6 [ T1e] Tee[ [ Tes[ [ |

- Data structure. Two-level solution.

-+ At level 1 use solution with many collisions and linear space.

+ Resolve each collisions at level 1 with collision-free solution at level 2.
- Space?

?:—'
]
s —[ [te] foe] [ Tes[ [ ]|

* Queries.
- LOOKUP(X): Check level 1 to find the correct level 2 dictionary. Lookup in level 2 dictionary.
- Time. O(1).

Solution 3: FKS-Scheme.

Static Dictionaries and Perfect Hashing

+ Space analysis. What is the the total size of level 1 and level 2 hash tables?
- LetSi={xeS|h(x) =i} T
+ Let C = total number of collisions on level 1.

S
. C= Z < ! 2" ) by construction.

1] [+ |

[ —Is4]

—{_[16] Tos]

[es] |

+ C = 0O(n) by solution 2.

a?=a+2 <a>
- Space. 2 —

o<n+zi‘,|si|2>=0<n+2<'si'+2<|szi|>>>

© ® N O NN 4O

O<n+ZISiI+2Z<|?|))=O(n+n+2n)=0(n)

- FKS scheme.
- O(n) space and O(n) expected preprocessing time.
+ Lookups with two evaluations of a universal hash function.

- Theorem. We can solve the static dictionary problem for a set S of size nin
- O(n) space and O(n) expected preprocessing time.
- O(1) worst-case time per lookup.

+ Multilevel data structures.

- FKS is example of multilevel data structure technique. Combine different solutions for same
problem to get an improved solution.




Hashing

String Hashing

- String Hashing

- Define hash function on strings.
+ Goals.

+ Low collision probability.

+ Fast evaluation.

- Small space.

- Fast string manipulation.

String Hashing

- Karp-Rabin Fingerprint.
- Let S be a string of length n. We view characters as digits and S as an integer.
- Let p is a prime number. Pick uniformly at random integer z €{0, ..., p-1}.

+ The Karp-Rabin fingerprint of S is

Pp(S) = S[112"" + 8[2)z" 2 + -+ + S[n — 1]z + S[n] mod p

<Z S[i] - z”‘i> mod p
=1

+ The fingerprint of S is the polynomial over the field Z, evaluated at the random integer z.

String Hashing
- Theorem. (Collision probability) Let S and T be distinct strings of length s, and let p be a prime.
For a random z €{0, ..., p-1}:

Pr(dy o(S) = b, o(T)) < %

+ Proof.

Pr (¢hp(S) = ¢y ,(T)) = Pr ( 2, Slil- 27 = 3 Tlil -2 mod p>
i=1

i=1
S .
=Pr( D (SLl-TIl)-2"=0 modp
. i=1
z (S[i] = T[i]) - ' is a non-zero polynomial over Z, of degree s-1.

i=1
+ = |t has at most s-1 roots = The probability that our random z is one of those is at most

(s-1)/p < s/p.




String Hashing

- Consider substrings of S of length s.

] [ Shi+s-1] |

. Fingerprint computation. We can compute (/’JP’Z(S[i, i+s—1])in Os) time.

+ Proof. See exercises.

- Rolling property. (]SP’Z(S[i +1,i+s]) = ((],’)p’Z(S[i, i+s—1])— S[i]zs_1)z + S[i+s] mod p
+ Proof. See exercises.

. = We can compute ¢p,Z(S[i + 1,i+s]) from ¢p,Z(S[i, i +s — 1]) in constant time.

String Hashing

-+ String matching. Given strings S and P, determine if P is a substring in S.

S = yabbadabbado
P = abba

- What solutions do we know? |P| =m, |S| = n.
- Brute force comparison: O(nm) time
- Knuth-Morris-Pratt algorithm [KMP1977]: O(n + m) time.

String Hashing

S = yabbadabbado
P = abba

- Karp-Rabin Algorithm.
+ Pick p = m2.
- Compute ¢(P).
- Compute and compare ¢(S[i, i + m — 1]) with ¢(P) for all i.
- If fingerprints match, verify using brute-force comparison. Return “yes!” if we match.
+ Time.
- Let F be the number of collisions, i.e., S[i, i+ m - 1] = P but ¢(S[i,i + m — 1]) = ¢(P).
+ =0(M+m+Fm).

String Hashing

S = yabbadabbado
P = abba

+ Expected number of collisions.
- The probability of collision at a single substring is m/p < 1/m.
- = Expected number of collision on all n-m+1 substrings < (n-m+1)/m < n/m.

- = Expected time is O(n + m + mn/m) = O(n + m).




String Hashing

+ Theorem. We can solve the string matching problem in O(n + m) time expected time.

-+ String matching with Karp-Rabin fingerprints. HaShing
- Simple, practical, fast.
+ More techniques = Fast reporting, small space, real-time, streaming, etc. . Hashing
- Dictionaries

+ Perfect Hashing
- String Hashing




